HEAL DSpace

A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandridis, A en
dc.contributor.author Patrinos, P en
dc.contributor.author Sarimveis, H en
dc.contributor.author Tsekouras, G en
dc.date.accessioned 2014-03-01T01:21:47Z
dc.date.available 2014-03-01T01:21:47Z
dc.date.issued 2005 en
dc.identifier.issn 0169-7439 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16373
dc.subject Evolutionary computation en
dc.subject Genetic algorithms en
dc.subject Neural networks en
dc.subject Radial basis functions en
dc.subject Simulated annealing en
dc.subject Variable selection en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Chemistry, Analytical en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Instruments & Instrumentation en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Statistics & Probability en
dc.subject.other accuracy en
dc.subject.other algorithm en
dc.subject.other analytical error en
dc.subject.other article en
dc.subject.other artificial intelligence en
dc.subject.other artificial neural network en
dc.subject.other bioavailability en
dc.subject.other chemometrics en
dc.subject.other data analysis en
dc.subject.other information processing en
dc.subject.other mathematical model en
dc.subject.other molecular evolution en
dc.subject.other particle size en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other reaction optimization en
dc.subject.other reduction kinetics en
dc.subject.other simulation en
dc.title A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.chemolab.2004.06.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.chemolab.2004.06.004 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In many modeling problems that are based on input-output data, information about a plethora of variables is available. In these cases, the proper selection of explanatory variables is very critical for the success of the produced model, since it eliminates noisy variables and possible correlations, reduces the size of the model and accomplishes more accurate predictions. Many variable selection procedures have been proposed in the literature, but most of them consider only linear models. In this work, we present a novel methodology for variable selection in nonlinear modeling, which combines the advantages of several artificial intelligence technologies. More specifically, the Radial Basis Function (RBF) neural network architecture serves as the nonlinear modeling tool, by exploiting the simplicity of its topology and the fast fuzzy means training algorithm. The proper variables are selected in two stages using a multi-objective optimization approach: in the first stage, a specially designed genetic algorithm minimizes the prediction error over a monitoring data set, while in the second stage a simulated annealing technique aims at the reduction of the number of explanatory variables. The efficiency of the proposed method is illustrated through its application to a number of benchmark problems. (C) 2004 Elsevier B.V All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Chemometrics and Intelligent Laboratory Systems en
dc.identifier.doi 10.1016/j.chemolab.2004.06.004 en
dc.identifier.isi ISI:000227055000004 en
dc.identifier.volume 75 en
dc.identifier.issue 2 en
dc.identifier.spage 149 en
dc.identifier.epage 162 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής