dc.contributor.author |
Georgiou, I |
en |
dc.date.accessioned |
2014-03-01T01:21:48Z |
|
dc.date.available |
2014-03-01T01:21:48Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0924-090X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16376 |
|
dc.subject |
Coupled vibrations |
en |
dc.subject |
Geometric singular perturbations |
en |
dc.subject |
Normal modes of vibration |
en |
dc.subject |
Proper orthogonal decomposition |
en |
dc.subject |
Reduced order system |
en |
dc.subject |
Slow invariant manifolds |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Natural frequencies |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Vibrations (mechanical) |
en |
dc.subject.other |
Coupled vibrations |
en |
dc.subject.other |
Geometeric singular perturbations |
en |
dc.subject.other |
Normal modes of vibration |
en |
dc.subject.other |
Proper orthogonal decompomposition |
en |
dc.subject.other |
Reduced order system |
en |
dc.subject.other |
Slow invariant manifolds |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
Advanced proper orthogonal decomposition tools: Using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11071-005-2793-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11071-005-2793-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Reduced order models for the dynamics of geometrically exact planar rods are derived by projecting the nonlinear equations of motion onto a subspace spanned by a set of proper orthogonal modes. These optimal modes are identified by a proper orthogonal decomposition processing of high-resolution finite element dynamics. A three-degree-of-freedom reduced system is derived to study distinct categories of motions dominated by a single POD mode. The modal analysis of the reduced system characterizes in a unique fashion for these motions, since its linear natural frequencies are near to the natural frequencies of the full-order system. For free motions characterized by a single POD mode, the eigen-vector matrix of the derived reduced system coincides with the principal POD-directions. This property reflects the existence of a normal mode of vibration, which appears to be close to a slow invariant manifold. Its shape is captured by that of the dominant POD mode. The modal analysis of the POD-based reduced order system provides a potentially valuable tool to characterize the spatio-temporal complexity of the dynamics in order to elucidate connections between proper orthogonal modes and nonlinear normal modes of vibration. © Springer 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Nonlinear Dynamics |
en |
dc.identifier.doi |
10.1007/s11071-005-2793-0 |
en |
dc.identifier.isi |
ISI:000230267900004 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
69 |
en |
dc.identifier.epage |
110 |
en |