dc.contributor.author |
Patermarakis, G |
en |
dc.contributor.author |
Moussoutzanis, K |
en |
dc.date.accessioned |
2014-03-01T01:21:48Z |
|
dc.date.available |
2014-03-01T01:21:48Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
1432-8488 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16379 |
|
dc.subject |
Film growth mechanism |
en |
dc.subject |
Interface colloidal Al2(SO4)3 |
en |
dc.subject |
Nanostructure |
en |
dc.subject |
Porous anodic aluminas |
en |
dc.subject |
Ultra-dense sulfate baths |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.other |
Coating techniques |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Current density |
en |
dc.subject.other |
Electrolytes |
en |
dc.subject.other |
Film growth |
en |
dc.subject.other |
Micelles |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Film growth mechanism |
en |
dc.subject.other |
Interface colloidal Al2(SO4)3 |
en |
dc.subject.other |
Porous anodic aluminas |
en |
dc.subject.other |
Ultra-dense sulfate baths |
en |
dc.subject.other |
Aluminum compounds |
en |
dc.title |
Aluminium anodising in ultra-dense sulfate baths: Discovery by overall kinetic and potentiometric studies of the critical role of interface colloidal Al2(SO4)3 nanoparticles in the mechanism of growth and nanostructure of porous oxide coatings |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10008-004-0568-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10008-004-0568-z |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The solubility of Al2(SO4)3 in H 2SO4 at different concentrations was determined and showed a minimum at ≈95% w/v. Overall kinetic and potentiometric studies of Al anodising were performed in large ranges of concentrations of saturated H 2SO4 solutions and current densities. During anodising quasi-steady-state supersaturation and unsaturation conditions for concentrations below and above 95% w/v dominate in the pore-filling solution affecting those in the oxide-electrolyte interface. Interface colloidal Al 2(SO4)3 nanoparticles form occupying surface fractions increasing with salt concentration, supersaturation, field strength in the pore base surface and current density increase and temperature decrease. These control the mechanism and kinetics of growth and structural parameters of films and impose the growth of non-pitted uniform films up to current densities higher than in unsaturated baths, more effectively under supersaturation conditions. Well-defined peaks of structural parameters appear depending on thickness and current. Thus optimal regularly grown films of desired nanostructure and the introduction of new anodising technologies can be achieved. © Springer-Verlag 2004. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Solid State Electrochemistry |
en |
dc.identifier.doi |
10.1007/s10008-004-0568-z |
en |
dc.identifier.isi |
ISI:000228729300006 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
205 |
en |
dc.identifier.epage |
233 |
en |