HEAL DSpace

An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lagaros, ND en
dc.contributor.author Charmpis, DC en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:21:48Z
dc.date.available 2014-03-01T01:21:48Z
dc.date.issued 2005 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16380
dc.subject Domain decomposition en
dc.subject Evolution strategies en
dc.subject Neural networks en
dc.subject Optimization en
dc.subject Parallel computing en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Finite element method en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Reliability en
dc.subject.other Structural design en
dc.subject.other Design vectors en
dc.subject.other Displacement en
dc.subject.other Evolution strategies (ES) en
dc.subject.other Sequential computing en
dc.subject.other Structural analysis en
dc.subject.other optimization en
dc.subject.other parallel computing en
dc.subject.other structural performance en
dc.title An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2004.12.023 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2004.12.023 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization. the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses, The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the FS process evolves by performing NN retrainings using information gradually accumulated during the ES execution, The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures On both sequential and parallel computing environments. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2004.12.023 en
dc.identifier.isi ISI:000230014800009 en
dc.identifier.volume 194 en
dc.identifier.issue 30-33 SPEC. ISS. en
dc.identifier.spage 3374 en
dc.identifier.epage 3393 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής