HEAL DSpace

Approximate gradient projection method with general Runge-Kutta schemes and piecewise polynomial controls for optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:21:51Z
dc.date.available 2014-03-01T01:21:51Z
dc.date.issued 2005 en
dc.identifier.issn 0324-8569 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16399
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-26044475922&partnerID=40&md5=22a310b81ddfe7bacd1fd65ad9455505 en
dc.relation.uri http://matwbn.icm.edu.pl/ksiazki/cc/cc34/cc3424.pdf en
dc.subject Discretization en
dc.subject Gradient projection method en
dc.subject Non-matching Runge-Kutta schemes en
dc.subject Optimal control en
dc.subject Piecewise polynomial controls en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Computer Science, Cybernetics en
dc.subject.other NONLINEAR OPTIMAL-CONTROL en
dc.subject.other INTERPOLANTS en
dc.subject.other CONVERGENCE en
dc.title Approximate gradient projection method with general Runge-Kutta schemes and piecewise polynomial controls for optimal control problems en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper addresses the numerical solution of optimal control problems for systems described by ordinary differential equations with control constraints. The state equation is discretized by a general explicit Run-e-Kutta scheme and the controls are approximated by functions that are piecewise polynomial, but not necessarily continuous. We then propose an approximate gradient projection method that constructs sequences of discrete controls and progressively refines the discretization. Instead of using the exact discrete cost derivative, which usually requires tedious calculations, we use here an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation by the same Runge-Kutta scheme backward and the integral involved by a Newton-Cotes integration rule, both involving maximal order intermediate approximations. The main result, is that strong accumulation points in L-2, if they exist, of sequences generated by this method satisfy the weak necessary conditions for optimality for the continuous problem. In the unconstrained case and under additional assumptions, we prove strong convergence in L-2 and derive an a posteriori error estimate. Finally, numerical examples are given. en
heal.publisher POLISH ACAD SCIENCES SYSTEMS RESEARCH INST en
heal.journalName Control and Cybernetics en
dc.identifier.isi ISI:000233503600003 en
dc.identifier.volume 34 en
dc.identifier.issue 2 en
dc.identifier.spage 425 en
dc.identifier.epage 451 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής