dc.contributor.author |
Chryssoverghi, I |
en |
dc.date.accessioned |
2014-03-01T01:21:51Z |
|
dc.date.available |
2014-03-01T01:21:51Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0324-8569 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16399 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-26044475922&partnerID=40&md5=22a310b81ddfe7bacd1fd65ad9455505 |
en |
dc.relation.uri |
http://matwbn.icm.edu.pl/ksiazki/cc/cc34/cc3424.pdf |
en |
dc.subject |
Discretization |
en |
dc.subject |
Gradient projection method |
en |
dc.subject |
Non-matching Runge-Kutta schemes |
en |
dc.subject |
Optimal control |
en |
dc.subject |
Piecewise polynomial controls |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Cybernetics |
en |
dc.subject.other |
NONLINEAR OPTIMAL-CONTROL |
en |
dc.subject.other |
INTERPOLANTS |
en |
dc.subject.other |
CONVERGENCE |
en |
dc.title |
Approximate gradient projection method with general Runge-Kutta schemes and piecewise polynomial controls for optimal control problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This paper addresses the numerical solution of optimal control problems for systems described by ordinary differential equations with control constraints. The state equation is discretized by a general explicit Run-e-Kutta scheme and the controls are approximated by functions that are piecewise polynomial, but not necessarily continuous. We then propose an approximate gradient projection method that constructs sequences of discrete controls and progressively refines the discretization. Instead of using the exact discrete cost derivative, which usually requires tedious calculations, we use here an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation by the same Runge-Kutta scheme backward and the integral involved by a Newton-Cotes integration rule, both involving maximal order intermediate approximations. The main result, is that strong accumulation points in L-2, if they exist, of sequences generated by this method satisfy the weak necessary conditions for optimality for the continuous problem. In the unconstrained case and under additional assumptions, we prove strong convergence in L-2 and derive an a posteriori error estimate. Finally, numerical examples are given. |
en |
heal.publisher |
POLISH ACAD SCIENCES SYSTEMS RESEARCH INST |
en |
heal.journalName |
Control and Cybernetics |
en |
dc.identifier.isi |
ISI:000233503600003 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
425 |
en |
dc.identifier.epage |
451 |
en |