dc.contributor.author |
Vonatsos, KN |
en |
dc.contributor.author |
Pantelis, DI |
en |
dc.date.accessioned |
2014-03-01T01:21:52Z |
|
dc.date.available |
2014-03-01T01:21:52Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0947-8396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16400 |
|
dc.subject |
Analytic Solution |
en |
dc.subject |
Approximate Solution |
en |
dc.subject |
Closed Form Solution |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Experimental Data |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
Phase Change |
en |
dc.subject |
Surface Treatment |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Alumina |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Carbon dioxide lasers |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Optical microscopy |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Specific heat |
en |
dc.subject.other |
Steel |
en |
dc.subject.other |
Surface treatment |
en |
dc.subject.other |
Thermal diffusion |
en |
dc.subject.other |
Laser surface treatment |
en |
dc.subject.other |
Laser-melted zones |
en |
dc.subject.other |
Stefan-Boltzmann constant |
en |
dc.subject.other |
Thermal model |
en |
dc.subject.other |
Laser applications |
en |
dc.title |
Approximate solutions for the evaluation of the depth of laser-melted zones |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00339-003-2339-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00339-003-2339-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In many practical applications there is a need for a fast and easy estimation of the depth of the laser-melted zone during laser-surface treatment. Closed-form solutions using the Fourier differential equation are quite difficult for problems with phase change and can be impossible for particular boundary and initial conditions. In this paper, we formulate the conservation of energy equation in an integral form and by prescribing the function for the thermal field we are able to derive a simple analytical solution for the evaluation of the depth of the laser-melted zone. The calculated values obtained by the model are in good agreement with the experimental data. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Applied Physics A: Materials Science and Processing |
en |
dc.identifier.doi |
10.1007/s00339-003-2339-6 |
en |
dc.identifier.isi |
ISI:000226460900040 |
en |
dc.identifier.volume |
80 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
885 |
en |
dc.identifier.epage |
889 |
en |