dc.contributor.author |
Papadopoulos, PG |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:21:59Z |
|
dc.date.available |
2014-03-01T01:21:59Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16418 |
|
dc.subject |
Central manifold theory |
en |
dc.subject |
Kirchhoff's equations |
en |
dc.subject |
Local and global solutions |
en |
dc.subject |
Quasilinear wave equations |
en |
dc.subject |
Strong and weak dissipation |
en |
dc.subject |
Unbounded domains |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Linear equations |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Central manifold theory |
en |
dc.subject.other |
Kirchoff's equations |
en |
dc.subject.other |
Local and global solutions |
en |
dc.subject.other |
Quasilinear wave equations |
en |
dc.subject.other |
Strong and weak dissipation |
en |
dc.subject.other |
Unbounded domains |
en |
dc.subject.other |
Wave equations |
en |
dc.title |
Central manifold theory for the generalized equation of Kirchhoff strings on ℝlN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2005.01.107 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2005.01.107 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We consider the generalized quasilinear dissipative Kirchhoff's String problem u(tt =) - || A (1/2) u ||(2)(H) Au - δ Au-t + f (u), x ε R-N, t ≥ 0 with the initial conditions u(x, 0) =u0(x) and u(t)(x, 0) = u(1)(x), in the case where N ≥ 3, δ > 0.The purpose of our work is to study the stability of the initial solution u = 0 for this equation using central manifold theory. © 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2005.01.107 |
en |
dc.identifier.isi |
ISI:000229126000004 |
en |
dc.identifier.volume |
61 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1343 |
en |
dc.identifier.epage |
1362 |
en |