dc.contributor.author |
Chatzimina, M |
en |
dc.contributor.author |
Georgiou, GC |
en |
dc.contributor.author |
Argyropaidas, I |
en |
dc.contributor.author |
Mitsoulis, E |
en |
dc.contributor.author |
Huilgol, RR |
en |
dc.date.accessioned |
2014-03-01T01:21:59Z |
|
dc.date.available |
2014-03-01T01:21:59Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0377-0257 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16419 |
|
dc.subject |
Bingham plastic |
en |
dc.subject |
Cessation |
en |
dc.subject |
Couette flow |
en |
dc.subject |
Papanastasiou model |
en |
dc.subject |
Poiseuille flow |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Non Newtonian flow |
en |
dc.subject.other |
Plastic flow |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Yield stress |
en |
dc.subject.other |
Bingham plastic |
en |
dc.subject.other |
Cessation |
en |
dc.subject.other |
Couette flows |
en |
dc.subject.other |
Papanastasiou model |
en |
dc.subject.other |
Poiseuille flows |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Bingham fluid |
en |
dc.subject.other |
Couette flow |
en |
dc.subject.other |
mathematical modeling |
en |
dc.subject.other |
plastic flow |
en |
dc.subject.other |
Poiseuille flow |
en |
dc.title |
Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jnnfm.2005.07.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jnnfm.2005.07.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We solve the one-dimensional cessation Couette and Poiseuille flows of a Bingham plastic using the regularized constitutive equation proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. The numerical calculations confirm previous theoretical findings that the stopping times are finite when the yield stress is nonzero. The decay of the volumetric flow rate, which is exponential in the Newtonian case, is accelerated and eventually becomes linear as the yield stress is increased. In all flows studied, the calculated stopping times are just below the theoretical upper bounds, which indicates that the latter are tight. (c) 2005 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Non-Newtonian Fluid Mechanics |
en |
dc.identifier.doi |
10.1016/j.jnnfm.2005.07.001 |
en |
dc.identifier.isi |
ISI:000232670700001 |
en |
dc.identifier.volume |
129 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
117 |
en |
dc.identifier.epage |
127 |
en |