HEAL DSpace

Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzimina, M en
dc.contributor.author Georgiou, GC en
dc.contributor.author Argyropaidas, I en
dc.contributor.author Mitsoulis, E en
dc.contributor.author Huilgol, RR en
dc.date.accessioned 2014-03-01T01:21:59Z
dc.date.available 2014-03-01T01:21:59Z
dc.date.issued 2005 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16419
dc.subject Bingham plastic en
dc.subject Cessation en
dc.subject Couette flow en
dc.subject Papanastasiou model en
dc.subject Poiseuille flow en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Finite element method en
dc.subject.other Mathematical models en
dc.subject.other Non Newtonian flow en
dc.subject.other Plastic flow en
dc.subject.other Polynomials en
dc.subject.other Yield stress en
dc.subject.other Bingham plastic en
dc.subject.other Cessation en
dc.subject.other Couette flows en
dc.subject.other Papanastasiou model en
dc.subject.other Poiseuille flows en
dc.subject.other Computational fluid dynamics en
dc.subject.other Bingham fluid en
dc.subject.other Couette flow en
dc.subject.other mathematical modeling en
dc.subject.other plastic flow en
dc.subject.other Poiseuille flow en
dc.title Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2005.07.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2005.07.001 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract We solve the one-dimensional cessation Couette and Poiseuille flows of a Bingham plastic using the regularized constitutive equation proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. The numerical calculations confirm previous theoretical findings that the stopping times are finite when the yield stress is nonzero. The decay of the volumetric flow rate, which is exponential in the Newtonian case, is accelerated and eventually becomes linear as the yield stress is increased. In all flows studied, the calculated stopping times are just below the theoretical upper bounds, which indicates that the latter are tight. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2005.07.001 en
dc.identifier.isi ISI:000232670700001 en
dc.identifier.volume 129 en
dc.identifier.issue 3 en
dc.identifier.spage 117 en
dc.identifier.epage 127 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής