dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Andrianopoulos, NP |
en |
dc.contributor.author |
Boulougouris, VC |
en |
dc.date.accessioned |
2014-03-01T01:21:59Z |
|
dc.date.available |
2014-03-01T01:21:59Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0033-5614 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16426 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Rigidity |
en |
dc.subject.other |
Abel equation |
en |
dc.subject.other |
Nonlinear partial differential equations |
en |
dc.subject.other |
Plane rigid perfect plasticity |
en |
dc.subject.other |
Plasticity |
en |
dc.title |
Closed-form solutions of the nonlinear partial differential equations governing plane rigid perfect plasticity problems by ad hoc assumptions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/qjmam/hbi029 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/qjmam/hbi029 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Closed-form solutions, including arbitrary functions, of the system of nonlinear partial differential equations in plane rigid perfect plasticity are extracted. This system is reduced to a strongly nonlinear ordinary differential equation which brings, to the solution of the Abel equation of the second kind, exact analytic solutions examples of which were recently constructed. The stress and strain-velocity fields are given and an example for an obtuse wedge under unilateral, uniformly distributed load, under plane-stress conditions, is described indicating that the present method can treat problems yet unsolved. The stress field is described analytically and results for the limiting load are analogous to the classical Prandtl formula. © The Author 2005. Published by Oxford University Press; all rights reserved. |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
Quarterly Journal of Mechanics and Applied Mathematics |
en |
dc.identifier.doi |
10.1093/qjmam/hbi029 |
en |
dc.identifier.isi |
ISI:000233842800009 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
665 |
en |
dc.identifier.epage |
682 |
en |