HEAL DSpace

Closed-form solutions of the nonlinear partial differential equations governing plane rigid perfect plasticity problems by ad hoc assumptions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panayotounakos, DE en
dc.contributor.author Andrianopoulos, NP en
dc.contributor.author Boulougouris, VC en
dc.date.accessioned 2014-03-01T01:21:59Z
dc.date.available 2014-03-01T01:21:59Z
dc.date.issued 2005 en
dc.identifier.issn 0033-5614 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16426
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other Mathematical models en
dc.subject.other Nonlinear equations en
dc.subject.other Ordinary differential equations en
dc.subject.other Partial differential equations en
dc.subject.other Rigidity en
dc.subject.other Abel equation en
dc.subject.other Nonlinear partial differential equations en
dc.subject.other Plane rigid perfect plasticity en
dc.subject.other Plasticity en
dc.title Closed-form solutions of the nonlinear partial differential equations governing plane rigid perfect plasticity problems by ad hoc assumptions en
heal.type journalArticle en
heal.identifier.primary 10.1093/qjmam/hbi029 en
heal.identifier.secondary http://dx.doi.org/10.1093/qjmam/hbi029 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Closed-form solutions, including arbitrary functions, of the system of nonlinear partial differential equations in plane rigid perfect plasticity are extracted. This system is reduced to a strongly nonlinear ordinary differential equation which brings, to the solution of the Abel equation of the second kind, exact analytic solutions examples of which were recently constructed. The stress and strain-velocity fields are given and an example for an obtuse wedge under unilateral, uniformly distributed load, under plane-stress conditions, is described indicating that the present method can treat problems yet unsolved. The stress field is described analytically and results for the limiting load are analogous to the classical Prandtl formula. © The Author 2005. Published by Oxford University Press; all rights reserved. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName Quarterly Journal of Mechanics and Applied Mathematics en
dc.identifier.doi 10.1093/qjmam/hbi029 en
dc.identifier.isi ISI:000233842800009 en
dc.identifier.volume 58 en
dc.identifier.issue 4 en
dc.identifier.spage 665 en
dc.identifier.epage 682 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής