dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:22:00Z |
|
dc.date.available |
2014-03-01T01:22:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0378-3758 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16430 |
|
dc.subject |
Construction |
en |
dc.subject |
Diophantine equations |
en |
dc.subject |
Generalized orthogonal designs |
en |
dc.subject |
Orthogonal designs |
en |
dc.subject |
Self-dual codes |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
SELF-DUAL CODES |
en |
dc.subject.other |
ORTHOGONAL DESIGNS |
en |
dc.subject.other |
GF(7) |
en |
dc.subject.other |
GF(5) |
en |
dc.title |
Combinatorial designs and codes over some prime fields |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jspi.2005.02.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jspi.2005.02.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Combinatorial designs are widely used in the construction of self-dual codes. Recently new methods for constructing self-dual codes are established using orthogonal designs, generalized orthogonal designs and Diophantine equations over GF(p). These methods have led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we propose some methods to generate self-dual codes, over GF(p). Moreover, we apply shortening and padding to obtain self orthogonal codes over GF(p), for some primes p. (c) 2005 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Statistical Planning and Inference |
en |
dc.identifier.doi |
10.1016/j.jspi.2005.02.008 |
en |
dc.identifier.isi |
ISI:000231586300008 |
en |
dc.identifier.volume |
135 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
93 |
en |
dc.identifier.epage |
106 |
en |