dc.contributor.author |
Grotkjaer, T |
en |
dc.contributor.author |
Christakopoulos, P |
en |
dc.contributor.author |
Nielsen, J |
en |
dc.contributor.author |
Olsson, L |
en |
dc.date.accessioned |
2014-03-01T01:22:00Z |
|
dc.date.available |
2014-03-01T01:22:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
10967176 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16431 |
|
dc.subject |
Carbon labelling |
en |
dc.subject |
Ethanol |
en |
dc.subject |
Glucose |
en |
dc.subject |
Metabolic engineering |
en |
dc.subject |
Metabolic network analysis |
en |
dc.subject |
NADH |
en |
dc.subject |
NADPH |
en |
dc.subject |
Saccharomyces cerevisiae |
en |
dc.subject |
Xylose |
en |
dc.subject |
Yeast |
en |
dc.subject.other |
Ethanol |
en |
dc.subject.other |
Glucose |
en |
dc.subject.other |
Metabolism |
en |
dc.subject.other |
Redox reactions |
en |
dc.subject.other |
Xylose |
en |
dc.subject.other |
Carbon labelling |
en |
dc.subject.other |
Metabolic engineering |
en |
dc.subject.other |
Redox metabolism |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.subject.other |
Yeast |
en |
dc.subject.other |
alcohol |
en |
dc.subject.other |
ammonia |
en |
dc.subject.other |
carbon 13 |
en |
dc.subject.other |
glucose |
en |
dc.subject.other |
glutamate dehydrogenase |
en |
dc.subject.other |
glyoxylic acid |
en |
dc.subject.other |
oxidoreductase |
en |
dc.subject.other |
reduced nicotinamide adenine dinucleotide |
en |
dc.subject.other |
reduced nicotinamide adenine dinucleotide phosphate |
en |
dc.subject.other |
xylose |
en |
dc.subject.other |
anaerobic metabolism |
en |
dc.subject.other |
analysis |
en |
dc.subject.other |
article |
en |
dc.subject.other |
carbohydrate metabolism |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
enzyme activity |
en |
dc.subject.other |
fermentation |
en |
dc.subject.other |
fungal metabolism |
en |
dc.subject.other |
fungal strain |
en |
dc.subject.other |
fungus culture |
en |
dc.subject.other |
fungus growth |
en |
dc.subject.other |
gene deletion |
en |
dc.subject.other |
gene overexpression |
en |
dc.subject.other |
genetic recombination |
en |
dc.subject.other |
isotope labeling |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
oxidation reduction reaction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Energy Metabolism |
en |
dc.subject.other |
Gene Expression Regulation, Fungal |
en |
dc.subject.other |
Genetic Enhancement |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Multienzyme Complexes |
en |
dc.subject.other |
Recombination, Genetic |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.subject.other |
Saccharomyces cerevisiae Proteins |
en |
dc.subject.other |
Signal Transduction |
en |
dc.subject.other |
Species Specificity |
en |
dc.subject.other |
Xylose |
en |
dc.subject.other |
Fungi |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.title |
Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ymben.2005.07.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ymben.2005.07.003 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The recombinant xylose fermenting strain Saccharomyces cerevisiae TMB3001 can grow on xylose, but the xylose utilisation rate is low. One important reason for the inefficient fermentation of xylose to ethanol is believed to be the imbalance of redox co-factors. In the present study, a metabolic flux model was constructed for two recombinant S. cerevisiae strains: TMB3001 and CPB.CR4 which in addition to xylose metabolism have a modulated redox metabolism, i.e. ammonia assimilation was shifted from being NADPH to NADH dependent by deletion of gdh1 and over-expression of GDH2. The intracellular fluxes were estimated for both strains in anaerobic continuous cultivations when the growth limiting feed consisted of glucose (2.5 g L-1) and xylose (13 g L-1). The metabolic network analysis with13C labelled glucose showed that there was a shift in the specific xylose reductase activity towards use of NADH as co-factor rather than NADPH. This shift is beneficial for solving the redox imbalance and it can therefore partly explain the 25% increase in the ethanol yield observed for CPB.CR4. Furthermore, the analysis indicated that the glyoxylate cycle was activated in CPB.CR4. © 2005 Elsevier Inc. All rights reserved. |
en |
heal.journalName |
Metabolic Engineering |
en |
dc.identifier.doi |
10.1016/j.ymben.2005.07.003 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
5-6 |
en |
dc.identifier.spage |
437 |
en |
dc.identifier.epage |
444 |
en |