HEAL DSpace

Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Grotkjaer, T en
dc.contributor.author Christakopoulos, P en
dc.contributor.author Nielsen, J en
dc.contributor.author Olsson, L en
dc.date.accessioned 2014-03-01T01:22:00Z
dc.date.available 2014-03-01T01:22:00Z
dc.date.issued 2005 en
dc.identifier.issn 10967176 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16431
dc.subject Carbon labelling en
dc.subject Ethanol en
dc.subject Glucose en
dc.subject Metabolic engineering en
dc.subject Metabolic network analysis en
dc.subject NADH en
dc.subject NADPH en
dc.subject Saccharomyces cerevisiae en
dc.subject Xylose en
dc.subject Yeast en
dc.subject.other Ethanol en
dc.subject.other Glucose en
dc.subject.other Metabolism en
dc.subject.other Redox reactions en
dc.subject.other Xylose en
dc.subject.other Carbon labelling en
dc.subject.other Metabolic engineering en
dc.subject.other Redox metabolism en
dc.subject.other Saccharomyces cerevisiae en
dc.subject.other Yeast en
dc.subject.other alcohol en
dc.subject.other ammonia en
dc.subject.other carbon 13 en
dc.subject.other glucose en
dc.subject.other glutamate dehydrogenase en
dc.subject.other glyoxylic acid en
dc.subject.other oxidoreductase en
dc.subject.other reduced nicotinamide adenine dinucleotide en
dc.subject.other reduced nicotinamide adenine dinucleotide phosphate en
dc.subject.other xylose en
dc.subject.other anaerobic metabolism en
dc.subject.other analysis en
dc.subject.other article en
dc.subject.other carbohydrate metabolism en
dc.subject.other controlled study en
dc.subject.other enzyme activity en
dc.subject.other fermentation en
dc.subject.other fungal metabolism en
dc.subject.other fungal strain en
dc.subject.other fungus culture en
dc.subject.other fungus growth en
dc.subject.other gene deletion en
dc.subject.other gene overexpression en
dc.subject.other genetic recombination en
dc.subject.other isotope labeling en
dc.subject.other nonhuman en
dc.subject.other oxidation reduction reaction en
dc.subject.other priority journal en
dc.subject.other Saccharomyces cerevisiae en
dc.subject.other Computer Simulation en
dc.subject.other Energy Metabolism en
dc.subject.other Gene Expression Regulation, Fungal en
dc.subject.other Genetic Enhancement en
dc.subject.other Models, Biological en
dc.subject.other Multienzyme Complexes en
dc.subject.other Recombination, Genetic en
dc.subject.other Saccharomyces cerevisiae en
dc.subject.other Saccharomyces cerevisiae Proteins en
dc.subject.other Signal Transduction en
dc.subject.other Species Specificity en
dc.subject.other Xylose en
dc.subject.other Fungi en
dc.subject.other Saccharomyces cerevisiae en
dc.title Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ymben.2005.07.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ymben.2005.07.003 en
heal.publicationDate 2005 en
heal.abstract The recombinant xylose fermenting strain Saccharomyces cerevisiae TMB3001 can grow on xylose, but the xylose utilisation rate is low. One important reason for the inefficient fermentation of xylose to ethanol is believed to be the imbalance of redox co-factors. In the present study, a metabolic flux model was constructed for two recombinant S. cerevisiae strains: TMB3001 and CPB.CR4 which in addition to xylose metabolism have a modulated redox metabolism, i.e. ammonia assimilation was shifted from being NADPH to NADH dependent by deletion of gdh1 and over-expression of GDH2. The intracellular fluxes were estimated for both strains in anaerobic continuous cultivations when the growth limiting feed consisted of glucose (2.5 g L-1) and xylose (13 g L-1). The metabolic network analysis with13C labelled glucose showed that there was a shift in the specific xylose reductase activity towards use of NADH as co-factor rather than NADPH. This shift is beneficial for solving the redox imbalance and it can therefore partly explain the 25% increase in the ethanol yield observed for CPB.CR4. Furthermore, the analysis indicated that the glyoxylate cycle was activated in CPB.CR4. © 2005 Elsevier Inc. All rights reserved. en
heal.journalName Metabolic Engineering en
dc.identifier.doi 10.1016/j.ymben.2005.07.003 en
dc.identifier.volume 7 en
dc.identifier.issue 5-6 en
dc.identifier.spage 437 en
dc.identifier.epage 444 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record