HEAL DSpace

Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lee, YS en
dc.contributor.author Kerschen, G en
dc.contributor.author Vakakis, AF en
dc.contributor.author Panagopoulos, P en
dc.contributor.author Bergman, L en
dc.contributor.author McFarland, DM en
dc.date.accessioned 2014-03-01T01:22:00Z
dc.date.available 2014-03-01T01:22:00Z
dc.date.issued 2005 en
dc.identifier.issn 0167-2789 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16436
dc.subject Energy transfer en
dc.subject Essential nonlinearity en
dc.subject Resonance capture en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.classification Physics, Mathematical en
dc.subject.other Computational complexity en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Energy transfer en
dc.subject.other Mathematical models en
dc.subject.other Mathematical transformations en
dc.subject.other Oscillators (electronic) en
dc.subject.other Problem solving en
dc.subject.other Essential nonlinearity en
dc.subject.other Linear oscillators en
dc.subject.other Nonlinear stiffness en
dc.subject.other Resonance capture en
dc.subject.other Nonlinear systems en
dc.title Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.physd.2005.03.014 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.physd.2005.03.014 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract We study the dynamics of a two-degree-of-freedom (DOF) nonlinear system consisting of a grounded linear oscillator coupled to a light mass by means of an essentially nonlinear (nonlinearizable) stiffness. We consider first the undamped system and perform a numerical study based on non-smooth transformations to determine its periodic solutions in a frequency-energy plot. It is found that there is a sequence of periodic solutions bifurcating or emanating from the main backbone curve of the plot. We then study analytically the periodic orbits of the undamped system using a complexification/averaging technique in order to determine the frequency contents of the various branches of solutions, and to understand the types of oscillation performed by the system at the different regimes of the motion. The transient responses of the weakly damped system are then examined, and numerical wavelet transforms are used to study the time evolutions of their harmonic components. We show that the structure of periodic orbits of the undamped system greatly influences the damped dynamics, as it causes complicated transitions between modes in the damped transient motion. In addition, there is the possibility of strong passive energy transfer (energy pumping) from the linear oscillator to the nonlinear attachment if certain periodic orbits of the undamped dynamics are excited by the initial conditions. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Physica D: Nonlinear Phenomena en
dc.identifier.doi 10.1016/j.physd.2005.03.014 en
dc.identifier.isi ISI:000229713900003 en
dc.identifier.volume 204 en
dc.identifier.issue 1-2 en
dc.identifier.spage 41 en
dc.identifier.epage 69 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής