HEAL DSpace

Datalog programs and their persistency numbers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Afrati, F en
dc.contributor.author Cosmadakis, S en
dc.contributor.author Foustoucos, E en
dc.date.accessioned 2014-03-01T01:22:02Z
dc.date.available 2014-03-01T01:22:02Z
dc.date.issued 2005 en
dc.identifier.issn 15293785 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16459
dc.subject Bounded-tree width hypergraphs en
dc.subject Boundedness en
dc.subject Datalog en
dc.subject Finite automata en
dc.subject Persistency numbers en
dc.subject Persistent variables en
dc.subject Program transformations en
dc.subject.other Bounded-tree width hypergraphs en
dc.subject.other Boundedness en
dc.subject.other Datalog en
dc.subject.other Decision problems en
dc.subject.other Languages en
dc.subject.other Models of computation en
dc.subject.other Persistency numbers en
dc.subject.other Persistent variables en
dc.subject.other Program transformations en
dc.subject.other Resource-bounded en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Database systems en
dc.subject.other Finite automata en
dc.subject.other Formal languages en
dc.subject.other Graph theory en
dc.subject.other Logic programming en
dc.subject.other Query languages en
dc.subject.other Computer programming en
dc.title Datalog programs and their persistency numbers en
heal.type journalArticle en
heal.identifier.primary 10.1145/1071596.1071597 en
heal.identifier.secondary http://dx.doi.org/10.1145/1071596.1071597 en
heal.publicationDate 2005 en
heal.abstract The relation between Datalog programs and homomorphism problems and between Datalog programs and bounded treewidth structures has been recognized for some time and given much attention recently. Additionally, the essential role of persistent variables (of program expansions) in solving several relevant problems has also started to be observed. It turns out that to understand the contribution of these persistent variables to the difficulty of some expressibility problems, we need to understand the interrelationship among different notions of persistency numbers, some of which we introduce and/or formalize in the present work. This article is a first foundational study of the various persistency numbers and their interrelationships. To prove the relations among these persistency numbers, we had to develop some nontrivial technical tools that promise to help in proving other interesting results too. More precisely, we define the adorned dependency graph of a program, a useful tool for visualizing sets of persistent variables, and we define automata that recognize persistent sets in expansions. We start by elaborating on finer definitions of expansions and queries, which capture aspects of homomorphism problems on bounded treewidth structures. The main results of this article are (a) a program transformation technique, based on automata-theoretic tools, which manipulates persistent variables (leading, in certain cases, to programs of fewer persistent variables); (b) a categorization of the different roles of persistent variables; this is done by defining four notions of persistency numbers which capture the propagation of persistent variables from a syntactical level to a semantical one; (c) decidability results concerning the syntactical notions of persistency numbers that we have defined; and (d) the exhibition of new classes of programs for which boundedness is undecidable. © 2005 ACM. en
heal.journalName ACM Transactions on Computational Logic en
dc.identifier.doi 10.1145/1071596.1071597 en
dc.identifier.volume 6 en
dc.identifier.issue 3 en
dc.identifier.spage 481 en
dc.identifier.epage 518 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής