HEAL DSpace

Design optimization of steel structures considering uncertainties

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Lagaros, ND en
dc.contributor.author Plevris, V en
dc.date.accessioned 2014-03-01T01:22:07Z
dc.date.available 2014-03-01T01:22:07Z
dc.date.issued 2005 en
dc.identifier.issn 0141-0296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16466
dc.subject Evolution Strategies en
dc.subject Monte Carlo simulation en
dc.subject Neural Networks en
dc.subject Reliability analysis en
dc.subject Robust design en
dc.subject Structural optimization en
dc.subject.classification Engineering, Civil en
dc.subject.other Computer simulation en
dc.subject.other Monte Carlo methods en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Performance en
dc.subject.other Structural design en
dc.subject.other Engineering applications en
dc.subject.other Reliability-based design optimization (RBDO) en
dc.subject.other Robust design optimization (RDO) en
dc.subject.other Structural response en
dc.subject.other Steel structures en
dc.subject.other structural analysis en
dc.title Design optimization of steel structures considering uncertainties en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.engstruct.2005.04.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.engstruct.2005.04.002 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In real world engineering applications the uncertainties of the structural parameters are inherent and the scatter from their nominal ideal values is in most cases unavoidable. These uncertainties play a dominant role in structural performance and the only way to assess this influence is to perform Reliability-Based Design Optimization (RBDO) and Robust Design Optimization (RDO). Compared to the basic deterministic-based optimization problem, a RBDO problem considers additional non-deterministic constraint functions, while the RDO yields a design with a state of robustness, so that its performance is the least sensitive to the variability of the uncertain parameters. The first part of this study examines the application of Neural Networks (NN) to the RBDO of large-scale structural systems, while the second part investigates the structural RDO problem. The use of NN in the framework of the RBDO problem is motivated by the approximate concepts inherent in reliability analysis and the time-consuming repeated analyses required by Monte Carlo Simulation. On the other hand the RDO is a multi-criteria optimization problem where the aim is to minimize both the weight of the structure and the variance of the structural response. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Structures en
dc.identifier.doi 10.1016/j.engstruct.2005.04.002 en
dc.identifier.isi ISI:000230383300010 en
dc.identifier.volume 27 en
dc.identifier.issue 9 en
dc.identifier.spage 1408 en
dc.identifier.epage 1418 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής