dc.contributor.author |
Chantzara, M |
en |
dc.contributor.author |
Anagnostou, M |
en |
dc.date.accessioned |
2014-03-01T01:22:09Z |
|
dc.date.available |
2014-03-01T01:22:09Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16468 |
|
dc.subject |
Context Information |
en |
dc.subject |
context-aware service |
en |
dc.subject |
Difference Set |
en |
dc.subject |
User Preferences |
en |
dc.subject |
User Satisfaction |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
MANAGEMENT |
en |
dc.subject.other |
SERVICES |
en |
dc.title |
Designing the context matching engine for evaluating and selecting context information sources |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/11740674_7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11740674_7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The easy creation of context-aware services requires the support of management facilities that provide ways to more easily acquire, represent and distribute context information. This paper claims that the quality level of a context-aware service determines the context information to be obtained. On the other hand, using context data produced by unsteady sources may affect the users' satisfaction. In this perspective, we introduce the Context Matching Engine that trades off the cost, the user preferences and the quality of the available context information in order to discover the best context sources for each customized context-aware service. According to the proposed approach, there is no need for the services to know beforehand the context providers to retrieve information, but the evaluation and the quality-aware selection of the context information on context request are envisioned. Finally, it allows services to be ported easily to environments with different set of context sources. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
MODELING AND RETRIEVAL OF CONTEXT |
en |
heal.bookName |
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE |
en |
dc.identifier.doi |
10.1007/11740674_7 |
en |
dc.identifier.isi |
ISI:000238187500007 |
en |
dc.identifier.volume |
3946 |
en |
dc.identifier.spage |
101 |
en |
dc.identifier.epage |
117 |
en |