dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:22:10Z |
|
dc.date.available |
2014-03-01T01:22:10Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0016-2736 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16474 |
|
dc.subject |
C(Κ) spaces |
en |
dc.subject |
C0-sequences |
en |
dc.subject |
Schreier families |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
WEAKLY NULL SEQUENCES |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
SUBSETS |
en |
dc.subject.other |
THEOREM |
en |
dc.subject.other |
RAMSEY |
en |
dc.subject.other |
SETS |
en |
dc.title |
Determining C0 in C(Κ) spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4064/fm187-1-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4064/fm187-1-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
For a countable compact metric space K and a seminormalized weakly null sequence (f(n))(n) in C(K) we provide some Upper bounds for the norm of the vectors in the linear span of a subsequence of (f(n))(n). These bounds depend on the complexity of K and also on the sequence (f(n))(n) itself. Moreover, we introduce the class of c(o)-hierarchies. We prove that for every alpha < omega(1), every normalized weakly null sequence (f(n))(n) in C(omega(omega alpha)) and every c(o)-hierarchy H generated by (f(n))(n), there exists beta <= alpha such that a sequence of beta-blocks of (f(n))(n) is equivalent to the usual basis of c(o). |
en |
heal.publisher |
POLISH ACAD SCIENCES INST MATHEMATICS |
en |
heal.journalName |
Fundamenta Mathematicae |
en |
dc.identifier.doi |
10.4064/fm187-1-3 |
en |
dc.identifier.isi |
ISI:000237328600003 |
en |
dc.identifier.volume |
187 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
61 |
en |
dc.identifier.epage |
93 |
en |