HEAL DSpace

Discretization methods for nonconvex optimal control problems with state constraints

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.contributor.author Coletsos, I en
dc.contributor.author Kokkinis, B en
dc.date.accessioned 2014-03-01T01:22:12Z
dc.date.available 2014-03-01T01:22:12Z
dc.date.issued 2005 en
dc.identifier.issn 0163-0563 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16485
dc.subject Discrete penalized conditional descent method en
dc.subject Discretization en
dc.subject Midpoint scheme en
dc.subject Optimal control en
dc.subject Relaxed controls en
dc.subject.classification Mathematics, Applied en
dc.subject.other Approximation theory en
dc.subject.other Constraint theory en
dc.subject.other Differential equations en
dc.subject.other Functions en
dc.subject.other Problem solving en
dc.subject.other Theorem proving en
dc.subject.other Discrete penalized conditional descent method en
dc.subject.other Discretization en
dc.subject.other Midpoint scheme en
dc.subject.other Optimal control en
dc.subject.other Relaxed controls en
dc.subject.other Optimal control systems en
dc.title Discretization methods for nonconvex optimal control problems with state constraints en
heal.type journalArticle en
heal.identifier.primary 10.1081/NFA-200067296 en
heal.identifier.secondary http://dx.doi.org/10.1081/NFA-200067296 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract We consider an optimal control problem described by nonlinear ordinary differential equations, with control and state constraints, including pointwise state constraints. Because no convexity assumptions are made, the problem may have no classical solutions, and it is reformulated in relaxed form. The relaxed control problem is then discretized by using the implicit midpoint scheme, while the controls are approximated by piecewise constant relaxed controls. We first study the behavior in the limit of properties of discrete relaxed optimalily, and of discrete relaxed admissibility and extremality. We then apply a penalized conditional descent method to each discrete relaxed problem, and also a corresponding discrete method to the continuous relaxed problem that progressively refines the discretization during the iterations, thus reducing computing time and memory. We prove that accumulation points of sequences generated by these methods are admissible and extremal for the discrete or the continuous problem. Finally, numerical examples are given. Copyright © Taylor & Francis, Inc. en
heal.publisher TAYLOR & FRANCIS INC en
heal.journalName Numerical Functional Analysis and Optimization en
dc.identifier.doi 10.1081/NFA-200067296 en
dc.identifier.isi ISI:000230890800003 en
dc.identifier.volume 26 en
dc.identifier.issue 3 en
dc.identifier.spage 321 en
dc.identifier.epage 348 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής