HEAL DSpace

Discretization-optimization methods for optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:22:12Z
dc.date.available 2014-03-01T01:22:12Z
dc.date.issued 2005 en
dc.identifier.issn 11092769 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16486
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-29844454535&partnerID=40&md5=9b38405b8be88b76f07f0344d75c207d en
dc.relation.uri http://www.wseas.us/e-library/conferences/2005corfu/c1/papers/498-222.pdf en
dc.subject Discretization en
dc.subject Midpoint scheme en
dc.subject Optimal control en
dc.subject Penalized gradient projection method en
dc.subject Piecewise constant controls en
dc.subject Relaxed controls en
dc.subject.other Approximation theory en
dc.subject.other Control system analysis en
dc.subject.other Gradient methods en
dc.subject.other Nonlinear control systems en
dc.subject.other Nonlinear equations en
dc.subject.other Optimization en
dc.subject.other Ordinary differential equations en
dc.subject.other Piecewise linear techniques en
dc.subject.other Discrete classical problem en
dc.subject.other Discretization en
dc.subject.other Midpoint scheme en
dc.subject.other Penalized gradient projection method en
dc.subject.other Piecewise constant controls en
dc.subject.other Relaxed controls en
dc.subject.other Optimal control systems en
dc.title Discretization-optimization methods for optimal control problems en
heal.type journalArticle en
heal.publicationDate 2005 en
heal.abstract We consider an optimal control problem described by nonlinear ordinary differential equations, with control and state constraints. Since this problem may have no classical solutions, it is also formulated in relaxed form. The classical control problem is then discretized by using the implicit midpoint scheme for state approximation, while the controls are approximated by piecewise constant classical ones. We first study the behavior in the limit of properties of discrete optimality, and of discrete admissibility and extremality. We then apply a penalized gradient projection method to each discrete classical problem, and also a corresponding progressively refining discretization-optimization method to the continuous classical problem, thus reducing computing rime and memory. We show that accumulation points of sequences generated by these methods are admissible and extremal for the corresponding discrete or continuous, classical or relaxed, problem. For nonconvex problems whose solutions are non-classical, we show that we can apply the above methods to the problem formulated in the Gamkrelidze form. Finally, numerical examples are given. en
heal.journalName WSEAS Transactions on Mathematics en
dc.identifier.volume 4 en
dc.identifier.issue 3 en
dc.identifier.spage 125 en
dc.identifier.epage 132 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής