dc.contributor.author |
Barampouti, EM |
en |
dc.contributor.author |
Mai, ST |
en |
dc.contributor.author |
Vlyssides, AG |
en |
dc.date.accessioned |
2014-03-01T01:22:13Z |
|
dc.date.available |
2014-03-01T01:22:13Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0167-6369 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16494 |
|
dc.subject |
Alkalinity |
en |
dc.subject |
Anaerobic digestion |
en |
dc.subject |
Dynamic model |
en |
dc.subject |
Potato processing wastewater |
en |
dc.subject |
Upflow anaerobic sludge blanket |
en |
dc.subject |
Volatile fatty acids |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Alkalinity |
en |
dc.subject.other |
Anaerobic digestion |
en |
dc.subject.other |
Carbonates |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Chemical reactors |
en |
dc.subject.other |
Fatty acids |
en |
dc.subject.other |
Food processing |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
pH effects |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Water treatment plants |
en |
dc.subject.other |
Dynamic mathematical model |
en |
dc.subject.other |
Potato processing wastewater treatment |
en |
dc.subject.other |
Upflow anaerobic sludge blanket reactor |
en |
dc.subject.other |
Volatile fatty acids |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
bicarbonate |
en |
dc.subject.other |
biogas |
en |
dc.subject.other |
industrial effluent |
en |
dc.subject.other |
volatile fatty acid |
en |
dc.subject.other |
waste treatment |
en |
dc.subject.other |
wastewater |
en |
dc.subject.other |
alkalinity |
en |
dc.subject.other |
anaerobic digestion |
en |
dc.subject.other |
article |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
flow rate |
en |
dc.subject.other |
food industry |
en |
dc.subject.other |
food processing |
en |
dc.subject.other |
hydrolysis |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
potato |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
regression analysis |
en |
dc.subject.other |
steady state |
en |
dc.subject.other |
temperature |
en |
dc.subject.other |
upflow reactor |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
Bicarbonates |
en |
dc.subject.other |
Bioreactors |
en |
dc.subject.other |
Fatty Acids, Volatile |
en |
dc.subject.other |
Food-Processing Industry |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Industrial Waste |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Regression Analysis |
en |
dc.subject.other |
Solanum tuberosum |
en |
dc.subject.other |
Waste Disposal, Fluid |
en |
dc.subject.other |
Solanum tuberosum |
en |
dc.title |
Dynamic modeling of the ratio volatile fatty acids/bicarbonate alkalinity in a UASB reactor for potato processing wastewater treatment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10661-005-6282-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10661-005-6282-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this work, dynamic mathematical model for the prediction of the operational parameter volatile fatty acids/bicarbonate alkalinity (VFA/ ALK) in a UASB reactor was developed. The dynamic modeling technique was applied successfully to a two-year data record from an industrial wastewater treatment plant of a potato processing industry. The technique used included regression analysis by residuals. Seventeen parameters were examined including the following: wastewater's flow rate, reactor's temperature and pH, total and soluble influent COD, wastewater's temperature and pH, total and soluble effluent COD, volatile fatty acids, alkalinity, biogas production rate and each parameter with a time lag of up to 10 days. Finally, after all parameters and all time lag trials the best fitted model was developed. The model's adequacy was checked by χ2 test for a data record of the same UASB reactor but at a different time period and proved to be satisfactory. Additionally, the model's ability to predict and to control the plant's operation via VFA/ALK was examined. Through this model, in contrary to steady state models, various aspects of the process can be enlighten, such as the fact that the hydrolysis of starch requires at least a resident time of seven days. © Springer Science + Business Media, Inc. 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Environmental Monitoring and Assessment |
en |
dc.identifier.doi |
10.1007/s10661-005-6282-1 |
en |
dc.identifier.isi |
ISI:000233529000007 |
en |
dc.identifier.volume |
110 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
121 |
en |
dc.identifier.epage |
128 |
en |