HEAL DSpace

Exact analytic solutions of the nonlinear partial differential equations governing rigid perfect plasticity problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stampouloglou, IH en
dc.contributor.author Theotokoglou, EE en
dc.contributor.author Panayotounakos, DE en
dc.date.accessioned 2014-03-01T01:22:19Z
dc.date.available 2014-03-01T01:22:19Z
dc.date.issued 2005 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16529
dc.subject Analytic Solution en
dc.subject Boundary Condition en
dc.subject Large Classes en
dc.subject Nonlinear Partial Differential Equation en
dc.subject Numerical Solution en
dc.subject Second Order en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Derivatives en
dc.subject.other Nonlinear equations en
dc.subject.other Partial differential equations en
dc.subject.other Problem solving en
dc.subject.other Strain en
dc.subject.other Stresses en
dc.subject.other Theorem proving en
dc.subject.other Governing equations en
dc.subject.other Nonlinear partial differential equations en
dc.subject.other Strain increments en
dc.subject.other Velocity distribution en
dc.subject.other Plasticity en
dc.title Exact analytic solutions of the nonlinear partial differential equations governing rigid perfect plasticity problems en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-004-0187-x en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-004-0187-x en
heal.language English en
heal.publicationDate 2005 en
heal.abstract We provide exact analytic solutions for the stress and velocity states in statically determinate rigid, perfectly plastic bodies under plane-strain conditions. The extracted solutions include more than one arbitrary function, a fact that permits us to use them for large classes of boundaries and boundary conditions. In addition, other solutions by making use of several ad hoc assumptions are constructed including one arbitrary function. For the stresses the solutions are extracted by the full decoupling of the system of the equilibrium equations and the appropriate von Mises-Hencky nonlinear condition, leading to a second order nonlinear partial differential equation (PDE) of the Monge type; for the velocities we use the Saint Venant-von Mises theory of plasticity PDEs. Several applications concerning the so-called direct problem are examined. The advantage of the proposed analytical solution methodology compared to the technique of characteristics is the general applicability delivered from the a priori construction of slip lines, as well as the demanded numerical solutions of the corresponding equations of characteristics. en
heal.publisher SPRINGER WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-004-0187-x en
dc.identifier.isi ISI:000227072700001 en
dc.identifier.volume 174 en
dc.identifier.issue 1-2 en
dc.identifier.spage 1 en
dc.identifier.epage 20 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής