dc.contributor.author |
Douka, P |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:23Z |
|
dc.date.available |
2014-03-01T01:22:23Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0025-584X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16546 |
|
dc.subject |
Bernstein-Nagumo-Wintner growth condition |
en |
dc.subject |
Completely continuous operator |
en |
dc.subject |
Fixed point |
en |
dc.subject |
Lower solution |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Multifunction |
en |
dc.subject |
Ordinary scalar p-laplacian |
en |
dc.subject |
Upper solution |
en |
dc.subject |
Zorn's lemma |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Extremal solutions for nonlinear second order differential inclusions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/mana.200310225 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/mana.200310225 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We consider a nonlinear second order differential inclusion driven by the scalar p-Laplacian and with nonlinear multivalued boundary conditions. Assuming the existence of an ordered pair of upper-lower solutions and using truncation and penalization techniques together with Zorn's lemma, we show that the problem has extremal solutions in the order interval formed by the upper und lower solutions. We present some special cases of interest and show that our method applies also to the periodic problem. (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
Mathematische Nachrichten |
en |
dc.identifier.doi |
10.1002/mana.200310225 |
en |
dc.identifier.isi |
ISI:000226835800004 |
en |
dc.identifier.volume |
278 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
43 |
en |
dc.identifier.epage |
52 |
en |