dc.contributor.author |
Zergioti, I |
en |
dc.contributor.author |
Karaiskou, A |
en |
dc.contributor.author |
Papazoglou, DG |
en |
dc.contributor.author |
Fotakis, C |
en |
dc.contributor.author |
Kapsetaki, M |
en |
dc.contributor.author |
Kafetzopoulos, D |
en |
dc.date.accessioned |
2014-03-01T01:22:24Z |
|
dc.date.available |
2014-03-01T01:22:24Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0003-6951 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16550 |
|
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Biosensors |
en |
dc.subject.other |
Deposition |
en |
dc.subject.other |
DNA |
en |
dc.subject.other |
Enzymes |
en |
dc.subject.other |
Fabrication |
en |
dc.subject.other |
Laser pulses |
en |
dc.subject.other |
Proteins |
en |
dc.subject.other |
Rapid prototyping |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Biomaterial patterns |
en |
dc.subject.other |
Femtosecond laser microprinting |
en |
dc.subject.other |
Microarrays chips |
en |
dc.subject.other |
Rheological properties |
en |
dc.subject.other |
Biomaterials |
en |
dc.title |
Femtosecond laser microprinting of biomaterials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.1906325 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.1906325 |
en |
heal.identifier.secondary |
163902 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This Letter demonstrates a laser rapid prototyping method that can be used for fabricating high-density resolution patterns of biomaterials. Ultraviolet femtosecond laser pulses have been used for directly printing a wide range of biomaterials in complicated patterns and structures. The ultrashort laser pulses reduce the thermal effects, thus allowing the effective deposition of sensitive biomaterials at high spatial resolution for microfabricating patterns. We present the microprinting of different biomaterial patterns, such as DNA (deoxyribonucleic acid) and proteins, with spatial resolution down to 50 μ m and we demonstrate that they maintain their properties and biological functions and, thus, can be practically used as biosensors. © 2005 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Applied Physics Letters |
en |
dc.identifier.doi |
10.1063/1.1906325 |
en |
dc.identifier.isi |
ISI:000229040300075 |
en |
dc.identifier.volume |
86 |
en |
dc.identifier.issue |
16 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
3 |
en |