HEAL DSpace

Flexibility-based upper bounds on the response variability of simple beams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Deodatis, G en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:22:25Z
dc.date.available 2014-03-01T01:22:25Z
dc.date.issued 2005 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16560
dc.subject Monte Carlo simulation en
dc.subject Optimization en
dc.subject Stochastic fields en
dc.subject Stochastic finite element analysis en
dc.subject Upper bounds en
dc.subject Variability response function en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Computer simulation en
dc.subject.other Elastic moduli en
dc.subject.other Mathematical models en
dc.subject.other Monte Carlo methods en
dc.subject.other Optimization en
dc.subject.other Probability distributions en
dc.subject.other Random processes en
dc.subject.other Brute-force optimization procedure en
dc.subject.other Response displacement en
dc.subject.other Response variability en
dc.subject.other Stochastic field modeling en
dc.subject.other Beams and girders en
dc.subject.other Monte Carlo simulation en
dc.subject.other stochastic method en
dc.title Flexibility-based upper bounds on the response variability of simple beams en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2004.06.040 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2004.06.040 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Spectral- and probability-distribution-free upper bounds on the response variability of both statically determinate and indeterminate beams are established in the present paper based on exact closed-form analytic expressions derived for the variance of the response displacement. A conjecture has to be made in the case of statically indeterminate beams in order to establish these bounds. The conjecture is supported through an argument postulating the existence of an integral form for the variance of the response displacement and through a brute-force optimization procedure providing numerical validation. Such bounds require knowledge of only the variance of the stochastic field modeling the inverse of the elastic modulus and are realizable in the sense that it is possible to fully determine the probabilistic characteristics of the stochastic field (modeling the inverse of the elastic modulus) that produces them. Furthermore, it is possible to fully determine also the corresponding stochastic field modeling the elastic modulus that produces these bounds. These spectral- and probability-distribution-free bounds can also be computed numerically using a so-called fast Monte Carlo simulation procedure that does not require a closed-form analytic expression for the response displacement, making this approach much more general. Numerical examples are provided involving a statically determinate and a statically indeterminate beam. (C) 2004 Published by Elsevier B.V. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2004.06.040 en
dc.identifier.isi ISI:000227483200006 en
dc.identifier.volume 194 en
dc.identifier.issue 12-16 en
dc.identifier.spage 1385 en
dc.identifier.epage 1404 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής