dc.contributor.author |
Economou, P |
en |
dc.contributor.author |
Caroni, C |
en |
dc.date.accessioned |
2014-03-01T01:22:27Z |
|
dc.date.available |
2014-03-01T01:22:27Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
1380-7870 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16575 |
|
dc.subject |
Burr |
en |
dc.subject |
Diagnostic plots |
en |
dc.subject |
Frailty |
en |
dc.subject |
Generalized Inverse Gaussian |
en |
dc.subject |
Proportional hazards |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
article |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
human |
en |
dc.subject.other |
life table |
en |
dc.subject.other |
normal distribution |
en |
dc.subject.other |
proportional hazards model |
en |
dc.subject.other |
statistics |
en |
dc.subject.other |
survival |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Life Tables |
en |
dc.subject.other |
Normal Distribution |
en |
dc.subject.other |
Proportional Hazards Models |
en |
dc.subject.other |
Statistics |
en |
dc.subject.other |
Survival Analysis |
en |
dc.title |
Graphical tests for the assumption of Gamma and Inverse Gaussian frailty distributions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10985-005-5240-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10985-005-5240-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The common choices of frailty distribution in lifetime data models include the Gamma and Inverse Gaussian distributions. We present diagnostic plots for these distributions when frailty operates in a proportional hazards framework. Firstly, we present plots based on the form of the unconditional survival function when the baseline hazard is assumed to be Weibull. Secondly, we base a plot on a closure property that applies for any baseline hazard, namely, that the frailty distribution among survivors at time t has the same form as the original distribution, with the same shape parameter but different scale parameter. We estimate the shape parameter at different values of t and examine whether it is constant, that is, whether plotted values form a straight line parallel to the time axis. We provide simulation results assuming Weibull baseline hazard and an example to illustrate the methods. © 2005 Springer Science+Business Media, Inc. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Lifetime Data Analysis |
en |
dc.identifier.doi |
10.1007/s10985-005-5240-0 |
en |
dc.identifier.isi |
ISI:000233392800008 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
565 |
en |
dc.identifier.epage |
582 |
en |