HEAL DSpace

Graphical tests for the assumption of Gamma and Inverse Gaussian frailty distributions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Economou, P en
dc.contributor.author Caroni, C en
dc.date.accessioned 2014-03-01T01:22:27Z
dc.date.available 2014-03-01T01:22:27Z
dc.date.issued 2005 en
dc.identifier.issn 1380-7870 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16575
dc.subject Burr en
dc.subject Diagnostic plots en
dc.subject Frailty en
dc.subject Generalized Inverse Gaussian en
dc.subject Proportional hazards en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Statistics & Probability en
dc.subject.other article en
dc.subject.other Greece en
dc.subject.other human en
dc.subject.other life table en
dc.subject.other normal distribution en
dc.subject.other proportional hazards model en
dc.subject.other statistics en
dc.subject.other survival en
dc.subject.other Greece en
dc.subject.other Humans en
dc.subject.other Life Tables en
dc.subject.other Normal Distribution en
dc.subject.other Proportional Hazards Models en
dc.subject.other Statistics en
dc.subject.other Survival Analysis en
dc.title Graphical tests for the assumption of Gamma and Inverse Gaussian frailty distributions en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10985-005-5240-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10985-005-5240-0 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The common choices of frailty distribution in lifetime data models include the Gamma and Inverse Gaussian distributions. We present diagnostic plots for these distributions when frailty operates in a proportional hazards framework. Firstly, we present plots based on the form of the unconditional survival function when the baseline hazard is assumed to be Weibull. Secondly, we base a plot on a closure property that applies for any baseline hazard, namely, that the frailty distribution among survivors at time t has the same form as the original distribution, with the same shape parameter but different scale parameter. We estimate the shape parameter at different values of t and examine whether it is constant, that is, whether plotted values form a straight line parallel to the time axis. We provide simulation results assuming Weibull baseline hazard and an example to illustrate the methods. © 2005 Springer Science+Business Media, Inc. en
heal.publisher SPRINGER en
heal.journalName Lifetime Data Analysis en
dc.identifier.doi 10.1007/s10985-005-5240-0 en
dc.identifier.isi ISI:000233392800008 en
dc.identifier.volume 11 en
dc.identifier.issue 4 en
dc.identifier.spage 565 en
dc.identifier.epage 582 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής