dc.contributor.author |
Drivaliaris, D |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:22:28Z |
|
dc.date.available |
2014-03-01T01:22:28Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16582 |
|
dc.subject |
Accretive operator |
en |
dc.subject |
Complemented subspace |
en |
dc.subject |
Equivalent norm |
en |
dc.subject |
Hilbert space characterization |
en |
dc.subject |
Positive operator |
en |
dc.subject |
Symmetric operator |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Hilbert space structure and positive operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2004.12.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2004.12.007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Let X be a real Banach space. We prove that the existence of an injective, positive, symmetric and not strictly singular operator from X into its dual implies that either X admits an equivalent Hilbertian norm or it contains a nontrivially complemented subspace which is isomorphic to a Hilbert space. We also treat the nonsymmetric case. (c) 2004 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2004.12.007 |
en |
dc.identifier.isi |
ISI:000228340300014 |
en |
dc.identifier.volume |
305 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
560 |
en |
dc.identifier.epage |
565 |
en |