HEAL DSpace

Implementing temporal-difference learning with the scaled conjugate gradient algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Falas, T en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:22:30Z
dc.date.available 2014-03-01T01:22:30Z
dc.date.issued 2005 en
dc.identifier.issn 1370-4621 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16594
dc.subject Reinforcement learning en
dc.subject Scaled conjugate gradient en
dc.subject Temporal-difference learning en
dc.subject Time series prediction en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Neurosciences en
dc.subject.other Data processing en
dc.subject.other Learning algorithms en
dc.subject.other Linear systems en
dc.subject.other Problem solving en
dc.subject.other Time series analysis en
dc.subject.other Reinforcement learning en
dc.subject.other Scaled conjugate gradients en
dc.subject.other Temporal-difference learning en
dc.subject.other Time series prediction en
dc.subject.other Learning systems en
dc.title Implementing temporal-difference learning with the scaled conjugate gradient algorithm en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11063-005-1384-x en
heal.identifier.secondary http://dx.doi.org/10.1007/s11063-005-1384-x en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper investigates the use of the scaled conjugate gradient (SCG) algorithm in temporal-difference (TD) learning for time series prediction. Special emphasis is given on the implementation details, after examining the theoretical background of the algorithm and the learning methodology and how these could be combined. Simple time series (linear, sinusoidal, etc.) as well as more complex ones, coming from real data, are used to examine the behavior of this novel combination of learning algorithm and methodology. Preliminary experimental results indicate that the implementation as presented in this paper indeed works, but the performance (in terms of learning speed and generalization ability) of TD learning using the SCG algorithm is not as good as expected, at least on the representative problems examined. An attempt to rationalize these results is presented. © Springer 2005. en
heal.publisher SPRINGER en
heal.journalName Neural Processing Letters en
dc.identifier.doi 10.1007/s11063-005-1384-x en
dc.identifier.isi ISI:000233276900009 en
dc.identifier.volume 22 en
dc.identifier.issue 3 en
dc.identifier.spage 361 en
dc.identifier.epage 375 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής