HEAL DSpace

Intelligent initialization of resource allocating RBF networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wallace, M en
dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:22:31Z
dc.date.available 2014-03-01T01:22:31Z
dc.date.issued 2005 en
dc.identifier.issn 0893-6080 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16602
dc.subject Ionosphere en
dc.subject Resource allocating networks en
dc.subject Wisconsin en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Data reduction en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Resource allocation en
dc.subject.other Clustering methods en
dc.subject.other Clustering processes en
dc.subject.other Network structures en
dc.subject.other Resource allocating networks (RAN) en
dc.subject.other Radial basis function networks en
dc.subject.other architecture en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other cluster analysis en
dc.subject.other intelligence en
dc.subject.other mathematical model en
dc.subject.other parameter en
dc.subject.other priority journal en
dc.subject.other reaction time en
dc.subject.other resource allocation en
dc.subject.other response time en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Bayes Theorem en
dc.subject.other Computer Simulation en
dc.subject.other Humans en
dc.subject.other Intelligence en
dc.subject.other Neural Networks (Computer) en
dc.title Intelligent initialization of resource allocating RBF networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.neunet.2004.11.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.neunet.2004.11.005 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In any neural network system, proper parameter initialization reduces training time and effort, and generally leads to compact modeling of the process under examination, i.e. less complex network structures and better generalization. However, in cases of multi-dimensional data, parameter initialization is both difficult and time consuming. In the proposed scheme a novel, multi-dimensional, unsupervised clustering method is used to properly initialize neural network architectures, focusing on resource allocating networks (RAN); both the hidden and output layer parameters are determined by the output of the clustering process, without the need for any user interference. The main contribution of this work is that the proposed approach leads to network structures that are compact, efficient and achieve best classification results, without the need for manual selection of suitable initial network parameters. The efficiency of the proposed method has been tested on several classes of publicly available data, such as iris, Wisconsin and ionosphere data. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Neural Networks en
dc.identifier.doi 10.1016/j.neunet.2004.11.005 en
dc.identifier.isi ISI:000228440100002 en
dc.identifier.volume 18 en
dc.identifier.issue 2 en
dc.identifier.spage 117 en
dc.identifier.epage 122 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής