dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:22:33Z |
|
dc.date.available |
2014-03-01T01:22:33Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0924-9907 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16615 |
|
dc.subject |
Fuzzy logic |
en |
dc.subject |
Lattices |
en |
dc.subject |
Mathematical morphology |
en |
dc.subject |
Minimax algebra |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Mathematical morphology |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Algebraic systems |
en |
dc.subject.other |
Fuzzy image operators |
en |
dc.subject.other |
Lattices |
en |
dc.subject.other |
Minimax algebra |
en |
dc.subject.other |
Image processing |
en |
dc.title |
Lattice image processing: A unification of morphological and fuzzy algebraic systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10851-005-4897-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10851-005-4897-z |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This paper explores some aspects of the algebraic theory of mathematical morphology from the viewpoints of minimax algebra and translation-invariant systems and extends them to a more general algebraic structure that includes generalized Minkowski operators and lattice fuzzy image operators. This algebraic structure is based on signal spaces that combine the sup-inf lattice structure with a scalar semi-ring arithmetic that possesses generalized 'additions' and *-'multiplications'. A unified analysis is developed for: (i) representations of translation-invariant operators compatible with these generalized algebraic structures as nonlinear sup-* convolutions, and (ii) kernel representations of increasing translation-invariant operators as suprema of erosion-like nonlinear convolutions by kernel elements. The theoretical results of this paper develop foundations for unifying large classes of nonlinear translation-invariant image and signal processing systems of the max or min type. The envisioned applications lie in the broad intersection of mathematical morphology, minimax signal algebra and fuzzy logic. © 2005 Springer Science + Business Media, Inc. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Mathematical Imaging and Vision |
en |
dc.identifier.doi |
10.1007/s10851-005-4897-z |
en |
dc.identifier.isi |
ISI:000229018500014 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
333 |
en |
dc.identifier.epage |
353 |
en |