HEAL DSpace

Lattice image processing: A unification of morphological and fuzzy algebraic systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:22:33Z
dc.date.available 2014-03-01T01:22:33Z
dc.date.issued 2005 en
dc.identifier.issn 0924-9907 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16615
dc.subject Fuzzy logic en
dc.subject Lattices en
dc.subject Mathematical morphology en
dc.subject Minimax algebra en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other Fuzzy sets en
dc.subject.other Image analysis en
dc.subject.other Mathematical morphology en
dc.subject.other Mathematical operators en
dc.subject.other Signal processing en
dc.subject.other Statistical methods en
dc.subject.other Algebraic systems en
dc.subject.other Fuzzy image operators en
dc.subject.other Lattices en
dc.subject.other Minimax algebra en
dc.subject.other Image processing en
dc.title Lattice image processing: A unification of morphological and fuzzy algebraic systems en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10851-005-4897-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s10851-005-4897-z en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper explores some aspects of the algebraic theory of mathematical morphology from the viewpoints of minimax algebra and translation-invariant systems and extends them to a more general algebraic structure that includes generalized Minkowski operators and lattice fuzzy image operators. This algebraic structure is based on signal spaces that combine the sup-inf lattice structure with a scalar semi-ring arithmetic that possesses generalized 'additions' and *-'multiplications'. A unified analysis is developed for: (i) representations of translation-invariant operators compatible with these generalized algebraic structures as nonlinear sup-* convolutions, and (ii) kernel representations of increasing translation-invariant operators as suprema of erosion-like nonlinear convolutions by kernel elements. The theoretical results of this paper develop foundations for unifying large classes of nonlinear translation-invariant image and signal processing systems of the max or min type. The envisioned applications lie in the broad intersection of mathematical morphology, minimax signal algebra and fuzzy logic. © 2005 Springer Science + Business Media, Inc. en
heal.publisher SPRINGER en
heal.journalName Journal of Mathematical Imaging and Vision en
dc.identifier.doi 10.1007/s10851-005-4897-z en
dc.identifier.isi ISI:000229018500014 en
dc.identifier.volume 22 en
dc.identifier.issue 2 en
dc.identifier.spage 333 en
dc.identifier.epage 353 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής