dc.contributor.author |
Maget, P |
en |
dc.contributor.author |
Artaud, J-F |
en |
dc.contributor.author |
Eriksson, L-G |
en |
dc.contributor.author |
Huysmans, G |
en |
dc.contributor.author |
Lazaros, A |
en |
dc.contributor.author |
Moreau, P |
en |
dc.contributor.author |
Ottaviani, M |
en |
dc.contributor.author |
Segui, J-L |
en |
dc.contributor.author |
Zwingmann, W |
en |
dc.date.accessioned |
2014-03-01T01:22:45Z |
|
dc.date.available |
2014-03-01T01:22:45Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0741-3335 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16641 |
|
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.classification |
Physics, Nuclear |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Electron cyclotron resonance |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Magnetic field effects |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Plasmas |
en |
dc.subject.other |
Tokamak devices |
en |
dc.subject.other |
Linear destabilization |
en |
dc.subject.other |
Linear instability |
en |
dc.subject.other |
Magnetic perturbations |
en |
dc.subject.other |
Nonclassical tearing mode (NTM) |
en |
dc.subject.other |
Magnetohydrodynamics |
en |
dc.title |
MHD activity triggered by monster sawtooth crashes on Tore Supra |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0741-3335/47/2/010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0741-3335/47/2/010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The crash of monster sawteeth in Tore Supra ion cyclotron resonance heated plasmas is observed to trigger long-lived magneto hydrodynamic (MHD) activity, dominated by a (m = 3, n = 2) magnetic perturbation at the edge. This phenomenon is reminiscent of the triggering of neoclassical tearing modes, although in Tore Supra the MHD activity decays and eventually vanishes. It can be explained by the linear destabilization of the (3,2) mode as the current sheet developed in the non-linear stage of the internal kink relaxation gets closer to q = 3/2. However, the lifetime of the (3,2) island is longer than the period of linear instability. We find that the neoclassical drive is essential for explaining the observed lifetime and width of the island, although the overall dynamics is controlled by the relaxation of the current profile on a resistive time scale. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Plasma Physics and Controlled Fusion |
en |
dc.identifier.doi |
10.1088/0741-3335/47/2/010 |
en |
dc.identifier.isi |
ISI:000227287600011 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
357 |
en |
dc.identifier.epage |
377 |
en |