HEAL DSpace

Modelling of the performance of industrial HDS reactors using a hybrid neural network approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bellos, GD en
dc.contributor.author Kallinikos, LE en
dc.contributor.author Gounaris, CE en
dc.contributor.author Papayannakos, NG en
dc.date.accessioned 2014-03-01T01:22:46Z
dc.date.available 2014-03-01T01:22:46Z
dc.date.issued 2005 en
dc.identifier.issn 0255-2701 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16649
dc.subject Catalyst deactivation en
dc.subject HDS kinetics en
dc.subject Industrial reactor simulation en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Chemical en
dc.subject.other Catalyst activity en
dc.subject.other Catalyst deactivation en
dc.subject.other Computer simulation en
dc.subject.other Desulfurization en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Reaction kinetics en
dc.subject.other Feed quality en
dc.subject.other Hybrid neural networks en
dc.subject.other Hydrodesulfurization en
dc.subject.other Industrial HDS reactors en
dc.subject.other Chemical reactors en
dc.subject.other neural network en
dc.title Modelling of the performance of industrial HDS reactors using a hybrid neural network approach en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cep.2004.06.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cep.2004.06.008 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract A hybrid neural network model is presented for the simulation of the performance of industrial HDS reactors. This model can be used in estimating the catalyst deactivation rate and the impact of feed quality on catalyst activity. A deterministic mathematical code simulating the reactor performance for hydrodesulphurization and hydrogen consumption reactions was used. The deterministic code was coupled with a neural network used to correlate the evaluated kinetic parameters from the industrial data with feed quality and catalyst life time. The neural network is also used to predict the kinetic parameters needed for simulation from the feed quality and the catalyst time on stream. A part of the necessary kinetic parameters were obtained from kinetic experiments performed with the industrial catalyst and with representative feeds in a small scale reactor. (C) 2004 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Chemical Engineering and Processing: Process Intensification en
dc.identifier.doi 10.1016/j.cep.2004.06.008 en
dc.identifier.isi ISI:000227513700001 en
dc.identifier.volume 44 en
dc.identifier.issue 5 en
dc.identifier.spage 505 en
dc.identifier.epage 515 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής