HEAL DSpace

Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charmpis, DC en
dc.contributor.author Lagaros, ND en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:22:48Z
dc.date.available 2014-03-01T01:22:48Z
dc.date.issued 2005 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16657
dc.subject Cascade en
dc.subject Database en
dc.subject Design space en
dc.subject Evolutionary algorithms en
dc.subject Sizing optimization en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Algorithms en
dc.subject.other Database systems en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Structural frames en
dc.subject.other Trusses en
dc.subject.other Design space en
dc.subject.other Optimal designs en
dc.subject.other Optimal solutions en
dc.subject.other Variables en
dc.subject.other Structural analysis en
dc.subject.other mathematical method en
dc.subject.other optimization en
dc.subject.other structural performance en
dc.title Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2004.12.020 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2004.12.020 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In discrete sizing optimization of truss and frame structures the design variables take values from databases, which are usually populated with a relatively small number of cross-section types and sizes. The aim of this work is to allow the use of large-size databases in discrete structural sizing optimization problems, in order to enrich the set of design variable options and increase the potential of achieving high-quality optimal designs. For this purpose, the concept of coarse database is introduced, according to which smaller-size versions of an appropriately ordered large database can be constructed, This concept is combined with the idea of cascading, which allows a single optimization problem to be tackled with a number of autonomous optimization stages. Under this context, several coarse versions of the same full-size database are formed, in order to utilize a different database in each cascade stage executed with an evolutionary optimization algorithm. The first optimization stages of the resulting multi-database cascade procedure make use of the coarsest database versions available and serve the purpose of basic design space exploration. The last stages exploit finer databases (including the original full-size database) and aim in fine tuning the achieved optimal solution. Based on the reported numerical results, multi-database cascading proves to be an effective tool for the handling of large databases and corresponding extensive design spaces in the framework of discrete structural sizing optimization applications. (c) 2005 Published by Elsevier B.V. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2004.12.020 en
dc.identifier.isi ISI:000230014800006 en
dc.identifier.volume 194 en
dc.identifier.issue 30-33 SPEC. ISS. en
dc.identifier.spage 3315 en
dc.identifier.epage 3330 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής