dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:49Z |
|
dc.date.available |
2014-03-01T01:22:49Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16663 |
|
dc.subject |
Discontinuous nonlinearity |
en |
dc.subject |
Generalized Ekeland variational principle |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Strong resonance |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
DIFFERENTIAL-EQUATIONS |
en |
dc.subject.other |
FUNCTIONALS |
en |
dc.subject.other |
INFINITY |
en |
dc.title |
Multiple solutions for strongly resonant nonlinear elliptic problems with discontinuities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9939-05-07864-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-05-07864-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We examine a nonlinear strongly resonant elliptic problem driven by the p-Laplacian and with a discontinuous nonlinearity. We assume that the discontinuity points are countable and at them the nonlinearity has an upward jump discontinuity. We show that the problem has at least two nontrivial solutions without using a multivalued interpretation of the problem as it is often the case in the literature. Our approach is variational based on the nonsmooth critical point theory for locally Lipschitz functions. © 2005 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9939-05-07864-0 |
en |
dc.identifier.isi |
ISI:000229111200021 |
en |
dc.identifier.volume |
133 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
2369 |
en |
dc.identifier.epage |
2376 |
en |