HEAL DSpace

Neural network analysis of overturning response under near-fault type excitation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gerolymos, N en
dc.contributor.author Apostolou, M en
dc.contributor.author Gazetas, G en
dc.date.accessioned 2014-03-01T01:22:49Z
dc.date.available 2014-03-01T01:22:49Z
dc.date.issued 2005 en
dc.identifier.issn 16713664 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16664
dc.subject Kocaeli records en
dc.subject Near-fault motion en
dc.subject Neural network en
dc.subject Overturning en
dc.subject Pulse en
dc.subject Rocking spectrum en
dc.subject Uplifting en
dc.subject.other Computational geometry en
dc.subject.other Neural networks en
dc.subject.other Numerical analysis en
dc.subject.other Uplift pressure en
dc.subject.other Wavelet transforms en
dc.subject.other Kocaeli records en
dc.subject.other Overturning en
dc.subject.other Pulse en
dc.subject.other Uplifting en
dc.subject.other Seismology en
dc.title Neural network analysis of overturning response under near-fault type excitation en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11803-005-0004-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11803-005-0004-0 en
heal.identifier.secondary 1671-3664(2005)02-0213-16 en
heal.publicationDate 2005 en
heal.abstract Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to the presence of strong pulses, to their detailed sequence, and even to their asymmetry. Five idealised pulses capable of representing ""rupture-directivity"" and ""fling"" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse ""Overturning-Acceleration Amplification"" and ""Rotation"" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift. en
heal.journalName Earthquake Engineering and Engineering Vibration en
dc.identifier.doi 10.1007/s11803-005-0004-0 en
dc.identifier.volume 4 en
dc.identifier.issue 2 en
dc.identifier.spage 213 en
dc.identifier.epage 228 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής