dc.contributor.author |
Papageorgiou, EH |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:49Z |
|
dc.date.available |
2014-03-01T01:22:49Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0232-2064 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16668 |
|
dc.subject |
Complete continuity |
en |
dc.subject |
Fixed point |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Nagumo-Hartaman nonlinearity |
en |
dc.subject |
Ordinary p-Laplacian |
en |
dc.subject |
P-Laplacian-like operator |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
2ND-ORDER DIFFERENTIAL-INCLUSIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Nonlinear boundary value problems involving the p-laplacian and p-laplacian-like operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4171/ZAA/1263 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4171/ZAA/1263 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We study nonlinear boundary value problems for systems driven by the vector p-Laplacian or p-Laplacian-like operators and having a maximal monotone term. We consider periodic problems and problems with nonlinear boundary conditions formulated in terms of maximal monotone operators. This way we achieve a unified treatment of the classical Dirichlet, Neumann and periodic problems. Our hypotheses permit the presence of Hartman and Nagumo-Hartman nonlinearities, partially extending this way some recent works of Mawhin and his coworkers. © Heldermann Verlag Berlin. |
en |
heal.publisher |
HELDERMANN VERLAG |
en |
heal.journalName |
Zeitschrift fur Analysis und ihre Anwendung |
en |
dc.identifier.doi |
10.4171/ZAA/1263 |
en |
dc.identifier.isi |
ISI:000235282200002 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
691 |
en |
dc.identifier.epage |
707 |
en |