dc.contributor.author | Papanicolaou, VG | en |
dc.contributor.author | Newton, PK | en |
dc.date.accessioned | 2014-03-01T01:22:49Z | |
dc.date.available | 2014-03-01T01:22:49Z | |
dc.date.issued | 2005 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/16669 | |
dc.subject.classification | Physics, Mathematical | en |
dc.title | Nonlinear dissipative eigenvalue problems with large initial conditions | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1063/1.1829154 | en |
heal.identifier.secondary | 013502 | en |
heal.identifier.secondary | http://dx.doi.org/10.1063/1.1829154 | en |
heal.language | English | en |
heal.publicationDate | 2005 | en |
heal.abstract | We consider the initial value problem mu'' + phi(t)mu' + B(2)mu(2p+1) =0, t greater then 0, mu(0)=gamma, mu'(0)=0, where rho is a positive integer, B, gamma are positive parameters, and phi(t) is a positive function. The differential equation describes a (dissipative) oscillatory system whose amplitude A(t) decreases in time. For a given time b greater than 0, our task is to compute the asymptotics of A(b), as gamma-->infinity. In the case where phiis an element of C-1(0, infinity)boolean and L-1(0, epsilion), we give an explicit answer. We also discuss the case where phi(t)=2/t. This case is of particular interest since it is related to the nonlinear Schrodinger equation in three dimensions. (C) 2005 American Institute of Physics. | en |
heal.publisher | AMER INST PHYSICS | en |
heal.journalName | Journal of Mathematical Physics | en |
dc.identifier.doi | 10.1063/1.1829154 | en |
dc.identifier.isi | ISI:000226921200030 | en |
dc.identifier.volume | 46 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 1 | en |
dc.identifier.epage | 10 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |