dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:49Z |
|
dc.date.available |
2014-03-01T01:22:49Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
1370-1444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16670 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-27644465705&partnerID=40&md5=542251b9646f1f83030c6ac90783fc4a |
en |
dc.subject |
Asymmetric nonlinearity |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Locally function |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
p-Laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Nonlinear Neumann problems with asymmetric nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper we study a scalar Neumann problem driven by the ordinary p-Lapacian and a nonsmooth potential. The nonlinearity exhibits an asymmetric behavior. Namely growth restriction is imposed in one direction only (either the positive direction or the negative direction). Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz function, we prove the existence of a solution. |
en |
heal.publisher |
BELGIAN MATHEMATICAL SOC TRIOMPHE |
en |
heal.journalName |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
en |
dc.identifier.isi |
ISI:000233121100010 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
417 |
en |
dc.identifier.epage |
433 |
en |