Nonlinear Neumann problems with asymmetric nonsmooth potential

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Hu, S en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:22:49Z
dc.date.available 2014-03-01T01:22:49Z
dc.date.issued 2005 en
dc.identifier.issn 1370-1444 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16670
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-27644465705&partnerID=40&md5=542251b9646f1f83030c6ac90783fc4a en
dc.subject Asymmetric nonlinearity en
dc.subject Generalized subdifferential en
dc.subject Linking sets en
dc.subject Locally function en
dc.subject Nonsmooth critical point theory en
dc.subject p-Laplacian en
dc.subject.classification Mathematics en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other RESONANCE en
dc.subject.other EQUATIONS en
dc.title Nonlinear Neumann problems with asymmetric nonsmooth potential en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper we study a scalar Neumann problem driven by the ordinary p-Lapacian and a nonsmooth potential. The nonlinearity exhibits an asymmetric behavior. Namely growth restriction is imposed in one direction only (either the positive direction or the negative direction). Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz function, we prove the existence of a solution. en
heal.journalName Bulletin of the Belgian Mathematical Society - Simon Stevin en
dc.identifier.isi ISI:000233121100010 en
dc.identifier.volume 12 en
dc.identifier.issue 3 en
dc.identifier.spage 417 en
dc.identifier.epage 433 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record