HEAL DSpace

Nonlinear resonances of parametrically excited risers-numerical and analytic investigation for Ω = 2ω1

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Chatjigeorgiou, IK en
dc.contributor.author Mavrakos, SA en
dc.date.accessioned 2014-03-01T01:22:49Z
dc.date.available 2014-03-01T01:22:49Z
dc.date.issued 2005 en
dc.identifier.issn 00457949 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16671
dc.subject Mathieu-Duffing instabilities en
dc.subject Parametric resonances en
dc.subject Risers en
dc.subject.other Approximation theory en
dc.subject.other Bending strength en
dc.subject.other Damping en
dc.subject.other Drag en
dc.subject.other Drilling en
dc.subject.other Equations of motion en
dc.subject.other Galerkin methods en
dc.subject.other Marine risers en
dc.subject.other Vibrations (mechanical) en
dc.subject.other Mathieu-Duffing instabilities en
dc.subject.other Nonlinear internal resonances en
dc.subject.other Parametric resonances en
dc.subject.other Risers en
dc.subject.other Parametric devices en
dc.title Nonlinear resonances of parametrically excited risers-numerical and analytic investigation for Ω = 2ω1 en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compstruc.2004.11.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compstruc.2004.11.009 en
heal.publicationDate 2005 en
heal.abstract The paper deals with the internal resonances originated from parametric excitation of a slender pipe conveying fluid for marine applications. The reported work focuses on a specific case study, which corresponds to an excitation frequency that is equal to the double of the structure's first lateral natural frequency. The features of the numerical predictions are enlightened through the analytic treatment of the problem, which is carried out using the method of multiple scales. The describing model takes into account both linear and quadratic damping components. For enabling the analytic approximation, only the first two time-dependent modes of the lateral motion are retained. After extensive mathematical manipulations and appropriate simplifications closed-form solutions have been obtained. Finally, the conclusions drawn through the numerical solution of the problem are compared and validated against analytical results. © 2004 Elsevier Ltd. All rights reserved. en
heal.journalName Computers and Structures en
dc.identifier.doi 10.1016/j.compstruc.2004.11.009 en
dc.identifier.volume 83 en
dc.identifier.issue 8-9 en
dc.identifier.spage 560 en
dc.identifier.epage 573 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record