HEAL DSpace

Nonlinear speech analysis using models for chaotic systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkinos, I en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:22:49Z
dc.date.available 2014-03-01T01:22:49Z
dc.date.issued 2005 en
dc.identifier.issn 1063-6676 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16672
dc.subject Chaos en
dc.subject Nonlinear systems en
dc.subject Speech analysis en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Chaotic systems en
dc.subject.other Phase space en
dc.subject.other Scalar signal en
dc.subject.other Speech signals en
dc.subject.other Chaos theory en
dc.subject.other Computer simulation en
dc.subject.other Distributed computer systems en
dc.subject.other Fuzzy sets en
dc.subject.other Nonlinear systems en
dc.subject.other Signal processing en
dc.subject.other Speech processing en
dc.subject.other Speech analysis en
dc.title Nonlinear speech analysis using models for chaotic systems en
heal.type journalArticle en
heal.identifier.primary 10.1109/TSA.2005.852982 en
heal.identifier.secondary http://dx.doi.org/10.1109/TSA.2005.852982 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper, we use concepts and methods from chaotic systems to model and analyze nonlinear dynamics in speech signals. The modeling is done not on the scalar speech signal, but on its reconstructed multidimensional attractor by embedding the scalar signal into a phase space. We have analyzed and compared a variety of nonlinear models for approximating the dynamics of complex systems using a small record of their observed output. These models include approximations based on global or local polynomials as well as approximations inspired from machine learning such as radial basis function networks, fuzzy-logic systems and support vector machines. Our focus has been on facilitating the application of the methods of chaotic signal analysis even when only a short time series is available, like phonemes in speech utterances. This introduced an increased degree of difficulty that was dealt with by resorting to sophisticated function approximation models that are appropriate for short data sets. Using these models enabled us to compute for short time series of speech sounds useful features like Lyapunov exponents that are used to assist in the characterization of chaotic systems. Several experimental insights are reported on the possible applications of such nonlinear models and features. © 2005 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Speech and Audio Processing en
dc.identifier.doi 10.1109/TSA.2005.852982 en
dc.identifier.isi ISI:000232734500002 en
dc.identifier.volume 13 en
dc.identifier.issue 6 en
dc.identifier.spage 1098 en
dc.identifier.epage 1109 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής