HEAL DSpace

Non-sequential multiscale content-based video decomposition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.date.accessioned 2014-03-01T01:22:50Z
dc.date.available 2014-03-01T01:22:50Z
dc.date.issued 2005 en
dc.identifier.issn 0165-1684 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16674
dc.subject Hierarchical summarization en
dc.subject MPEG-7 en
dc.subject Video decomposition en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Graph theory en
dc.subject.other Image quality en
dc.subject.other Optical resolving power en
dc.subject.other Stochastic programming en
dc.subject.other Hierarchical summarization en
dc.subject.other MPEG-7 en
dc.subject.other Video decomposition en
dc.subject.other Video files en
dc.subject.other Content based retrieval en
dc.title Non-sequential multiscale content-based video decomposition en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.sigpro.2004.10.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.sigpro.2004.10.004 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper, a multiscale content-based video decomposition scheme is presented for efficient non-linear (non-sequential) organization of the video visual content. In particular, each video file is analyzed in a multiscale structure of different ""content resolution levels"", creating a hierarchy from the lowest (coarse) to the highest (fine) resolution. The scheme resembles the progressive transmission of still images, where instead of transmitting the image sequentially at a full resolution, by scanning it line by line, a lower image resolution is first delivered and then, the image quality gradually enhances so that the user is able at any time to see a preview of the image content. The proposed video decomposition is represented as a graph structure, each level of which corresponds to a particular content resolution, while the graph-nodes the respective regions that the content is analyzed at this level. Transitions among nodes of the same level are also permitted. The number of nodes at a given level expresses the degree of detail that the content at this level is analyzed. This number is estimated by minimizing the average transmitted information, required for localizing a video segment of interest and also takes into account the content complexity. Quality criteria are introduced to evaluate the efficiency of the proposed scheme. The efficiency of the organization is maximized if multiscale content decomposition is performed using content representatives and constructing content classes. Content representatives are estimated in our approach as the ones of the maximum dissimilarity, expressed by a distance metric. The optimization is conducted by incorporating a stochastic algorithm of logarithmically reduced searching area (stochastic logarithmic). Experimental results on real-life video sequences show that the proposed multiscale video organization enables users to detect content of interest much faster, compared to the conventional sequential video scanning or other video decomposition/summarization methods, resulting in a better organization efficiency as measured by the quality criteria. © 2004 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Signal Processing en
dc.identifier.doi 10.1016/j.sigpro.2004.10.004 en
dc.identifier.isi ISI:000226430700007 en
dc.identifier.volume 85 en
dc.identifier.issue 2 en
dc.identifier.spage 325 en
dc.identifier.epage 356 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής