HEAL DSpace

Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyritsi, ST en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:22:50Z
dc.date.available 2014-03-01T01:22:50Z
dc.date.issued 2005 en
dc.identifier.issn 0362-546X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16675
dc.subject Critical point en
dc.subject Critical value en
dc.subject Deformation result en
dc.subject Hemivariational inequality en
dc.subject Higher eigenvalues en
dc.subject Locally Lipschitz function en
dc.subject Lower solution en
dc.subject p-Laplacian en
dc.subject Positive solution en
dc.subject Principal eigenvalue en
dc.subject Rayleigh quotient en
dc.subject Subdifferential en
dc.subject Upper solution en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Function evaluation en
dc.subject.other Mathematical operators en
dc.subject.other Set theory en
dc.subject.other Variational techniques en
dc.subject.other Critical point en
dc.subject.other Critical value en
dc.subject.other Deformation result en
dc.subject.other Hemivariational inequality en
dc.subject.other Higher eigenvalues en
dc.subject.other Locally Lipschitz function en
dc.subject.other Lower solution en
dc.subject.other Principal eigenvalue en
dc.subject.other Rayleigh quotient en
dc.subject.other Upper solution en
dc.subject.other Nonlinear systems en
dc.title Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.na.2004.12.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.na.2004.12.001 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper we develop a critical point theory for nonsmooth locally Lipschitz functionals defined on a closed, convex set extending this way the work of Struwe (Variational Methods, Springer, Berlin, 1990). Through a deformation result, we obtain minimax principles producing critical points. Then we use the theory to obtain positive and negative solutions of nonlinear and semilinear hemivariational inequalities. In this context we improve a result on positive solutions for semilinear elliptic problems due to Nirenberg (Variational methods in nonlinear problems, in: Topics in Calculus of Variations, Lecture Notes in Mathematics, vol. 1365, Springer, Berlin, 1987). (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Nonlinear Analysis, Theory, Methods and Applications en
dc.identifier.doi 10.1016/j.na.2004.12.001 en
dc.identifier.isi ISI:000227749500005 en
dc.identifier.volume 61 en
dc.identifier.issue 3 en
dc.identifier.spage 373 en
dc.identifier.epage 403 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής