dc.contributor.author |
Noor, MA |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:22:51Z |
|
dc.date.available |
2014-03-01T01:22:51Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16685 |
|
dc.subject |
Auxiliary principle |
en |
dc.subject |
Convergence |
en |
dc.subject |
Dual problems |
en |
dc.subject |
Equilibrium problems |
en |
dc.subject |
Iterative methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
GENERAL VARIATIONAL-INEQUALITIES |
en |
dc.subject.other |
SCHEMES |
en |
dc.title |
On nonconvex equilibrium problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2005.03.069 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2005.03.069 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper, we introduce a new class of equilibrium problems, known as mixed quasi nonconvex equilibrium problems. We suggest some iterative schemes for solving nonconvex equilibrium problems by using the auxiliary principle technique. The convergence of the proposed methods either requires partially relaxed strongly monotonicity or pseudomonotonicity. As special cases, we obtain a number of known and new results for solving various classes of equilibrium and variational inequality problems. (c) 2005 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2005.03.069 |
en |
dc.identifier.isi |
ISI:000232960800022 |
en |
dc.identifier.volume |
312 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
289 |
en |
dc.identifier.epage |
299 |
en |