HEAL DSpace

On optimal model complexity in inverse modeling of heterogeneous aquifers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantoglou, A en
dc.date.accessioned 2014-03-01T01:22:51Z
dc.date.available 2014-03-01T01:22:51Z
dc.date.issued 2005 en
dc.identifier.issn 0022-1686 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16686
dc.subject Groundwater simulations en
dc.subject Heterogeneous aquifers en
dc.subject Inverse groundwater modeling en
dc.subject Parameter estimation en
dc.subject Random fields en
dc.subject Stochastic groundwater modeling en
dc.subject.classification Engineering, Civil en
dc.subject.classification Water Resources en
dc.subject.other Computer simulation en
dc.subject.other Correlation methods en
dc.subject.other Groundwater flow en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Random processes en
dc.subject.other Groundwater simulations en
dc.subject.other Heterogeneous aquifers en
dc.subject.other Inverse groundwater modeling en
dc.subject.other Random fields en
dc.subject.other Stochastic groundwater modeling en
dc.subject.other Aquifers en
dc.subject.other flow modeling en
dc.subject.other groundwater en
dc.subject.other stochastic method en
dc.subject.other flow modeling en
dc.subject.other groundwater flow en
dc.subject.other stochasticity en
dc.title On optimal model complexity in inverse modeling of heterogeneous aquifers en
heal.type journalArticle en
heal.identifier.primary 10.1080/00221680509500156 en
heal.identifier.secondary http://dx.doi.org/10.1080/00221680509500156 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper investigates the prediction ability of models of various complexities and the optimal model structure depending on the real system complexity and the quality of measurements. A simulation approach is used where the underlying transmissivity map is assumed a member of a random field and realizations of transmissivity maps are generated using stochastic simulation. For each simulation run, several models with different structures and complexities, based on zonation parameterization, are calibrated and the model transmissivities are estimated using measurements of head data. Then, using the calibrated models, the heads and the flow terms are evaluated in the numerical cells of the aquifer. The corresponding prediction the heads and flow terms are calculated and the optimal models having the lowest prediction errors are determined. The method is applied study of a two-dimensional aquifer with steady groundwater flow with pumpage. For small correlation lengths of transmissivity variability, the numerical results indicate that a simple singlezone model yields the best predictions and outperforms complex models with more parameters. For larger correlation lengths however, models of medium complexity have best prediction characteristics and should be preferred. It is further shown quantitatively that as the quality of measurements decreases the number of parameters and the complexity of the optimal model decreases. The reduced flexibility of a model with fewer parameters protects it from being adversely affected from the errors contained in the measurements. © 2005 International Association of Hydraulic Engineering and Research. en
heal.publisher INT ASSN HYDRAULIC RESEARCH en
heal.journalName Journal of Hydraulic Research en
dc.identifier.doi 10.1080/00221680509500156 en
dc.identifier.isi ISI:000234808500014 en
dc.identifier.volume 43 en
dc.identifier.issue 5 en
dc.identifier.spage 574 en
dc.identifier.epage 583 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής