dc.contributor.author |
Skiadopoulos, S |
en |
dc.contributor.author |
Koubarakis, M |
en |
dc.date.accessioned |
2014-03-01T01:22:51Z |
|
dc.date.available |
2014-03-01T01:22:51Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0004-3702 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16688 |
|
dc.subject |
Cardinal direction relations |
en |
dc.subject |
Consistency checking |
en |
dc.subject |
Qualitative spatial reasoning |
en |
dc.subject |
Spatial constraints |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Cardinal direction relations |
en |
dc.subject.other |
Consistency checking |
en |
dc.subject.other |
Qualitative spatial reasoning |
en |
dc.subject.other |
Spatial constraints |
en |
dc.subject.other |
Constraint theory |
en |
dc.title |
On the consistency of cardinal direction constraints |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.artint.2004.10.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.artint.2004.10.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We present a formal model for qualitative spatial reasoning with cardinal directions utilizing a coordinate system. Then, we study the problem of checking the consistency of a set of cardinal direction constraints. We introduce the first algorithm for this problem, prove its correctness and analyze its computational complexity. Utilizing the above algorithm, we prove that the consistency checking of a set of basic (i.e., non-disjunctive) cardinal direction constraints can be performed in O(n(5)) time. We also show that the consistency checking of a set of unrestricted (i.e., disjunctive and non-disjunctive) cardinal direction constraints is NP-complete. Finally, we briefly discuss an extension to the basic model and outline an algorithm for the consistency checking problem of this extension. (C) 2004 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Artificial Intelligence |
en |
dc.identifier.doi |
10.1016/j.artint.2004.10.010 |
en |
dc.identifier.isi |
ISI:000226849600004 |
en |
dc.identifier.volume |
163 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
91 |
en |
dc.identifier.epage |
135 |
en |