dc.contributor.author |
Papakanellos, PJ |
en |
dc.contributor.author |
Heretakis, II |
en |
dc.contributor.author |
Capsalis, CN |
en |
dc.date.accessioned |
2014-03-01T01:22:51Z |
|
dc.date.available |
2014-03-01T01:22:51Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0894-3370 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16689 |
|
dc.subject |
Ground effects |
en |
dc.subject |
Method of auxiliary sources |
en |
dc.subject |
Numerical methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Dielectric properties |
en |
dc.subject.other |
Errors |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Auxiliary sources |
en |
dc.subject.other |
Domains |
en |
dc.subject.other |
Electric dipoles |
en |
dc.subject.other |
Linear media |
en |
dc.subject.other |
Electromagnetism |
en |
dc.title |
On the convergence properties of the method of auxiliary sources in 3D problems with open boundaries |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/jnm.562 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/jnm.562 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper, the convergence behaviour of the method of auxiliary sources (MAS) is studied in cases of simple three-dimensional (3D) problems with open regions. For the assessment of the convergence behaviour in such cases in a general manner, the cases considered herein consist in elemental electric dipoles radiating in the close proximity to a planar dissipative ground. Both vertically and horizontally oriented dipoles with respect to the ground plane are examined. The aim of the study is to investigate the interrelation between the auxiliary sources locations and the resultant field continuity errors. For this, the dependence of the boundary conditions errors on the number and spacing of the auxiliary sources is exhibited and general rules regarding their behaviour are extracted. Moreover, the influence of these errors on quantities of interest is examined. Finally, a few concluding remarks are outlined and their possible utilization in cases of more composite 3D problems is discussed. Copyright © 2004 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields |
en |
dc.identifier.doi |
10.1002/jnm.562 |
en |
dc.identifier.isi |
ISI:000226259300005 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
67 |
en |
dc.identifier.epage |
83 |
en |