dc.contributor.author |
Filippakis, M |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:52Z |
|
dc.date.available |
2014-03-01T01:22:52Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0925-5001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16692 |
|
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Hemivariational inequality |
en |
dc.subject |
Nonsmooth Cerami condition |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
Nonsmooth Mountain Pass Theorem |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Positive solution |
en |
dc.subject |
Principal eigenvalue and eigenfunction |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Clarke subdifferential |
en |
dc.subject.other |
Hemivariational inequality |
en |
dc.subject.other |
Nonsmooth Cerami condition |
en |
dc.subject.other |
Nonsmooth critical point theory |
en |
dc.subject.other |
Nonsmooth Mountain Pass theorem |
en |
dc.subject.other |
p-Laplacian |
en |
dc.subject.other |
Positive solutions |
en |
dc.subject.other |
Principle eigenvalue and eigenfunction |
en |
dc.subject.other |
Linear equations |
en |
dc.title |
On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10898-003-5444-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10898-003-5444-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We study nonlinear elliptic problems driven by the p-Laplacian and with a nonsmooth locally Lipschitz potential (hemivariational inequality). We do not assume that the nonsmooth potential satisfies the Ambrosetti - Rabinowitz condition. Using a variational approach based on the nonsmooth critical point theory we establish the existence of at least one smooth positive solution. © Springer 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Global Optimization |
en |
dc.identifier.doi |
10.1007/s10898-003-5444-3 |
en |
dc.identifier.isi |
ISI:000228854700011 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
173 |
en |
dc.identifier.epage |
189 |
en |