dc.contributor.author |
Drakaki, E |
en |
dc.contributor.author |
Psycharakis, S |
en |
dc.contributor.author |
Makropoulou, M |
en |
dc.contributor.author |
Serafetinides, AA |
en |
dc.date.accessioned |
2014-03-01T01:22:53Z |
|
dc.date.available |
2014-03-01T01:22:53Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0030-4018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16701 |
|
dc.subject |
Absorption |
en |
dc.subject |
Fluence distribution |
en |
dc.subject |
Light propagation |
en |
dc.subject |
Monte Carlo technique |
en |
dc.subject |
Scattering media |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Absorption spectroscopy |
en |
dc.subject.other |
Biomedical engineering |
en |
dc.subject.other |
Dosimetry |
en |
dc.subject.other |
Emission spectroscopy |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Laser beams |
en |
dc.subject.other |
Light modulation |
en |
dc.subject.other |
Light propagation |
en |
dc.subject.other |
Light scattering |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Fluence distributions |
en |
dc.subject.other |
Fluorescence spectra |
en |
dc.subject.other |
Monte carlo technique |
en |
dc.subject.other |
Scattering media |
en |
dc.subject.other |
Chromophores |
en |
dc.title |
Optical properties and chromophore concentration measurements in tissue-like phantoms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.optcom.2005.05.013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.optcom.2005.05.013 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Biomedical laser light dosimetry relies on spatial light distribution measurements in combination with the appropriate laser-tissue interaction model that may be used to determine the tissue Optical Coefficients and the fluorophore concentration from its fluorescence spectra. Therefore. modelling of light transport in tissue. for optimization of laser dosimetry, requires the development of simple theoretical models and the experimental implementation in tissue-simulating phantoms, with known optical and fluorescence properties. Low cost phantoms were used, based on agar dissolved ill water as the transparent matrix, The latter is loaded with various amounts of Intralipid and fluorophores as light scatterer and absorbers, respectively. The optical properties of these phantoms were measured at two different visible wavelengths. By comparing the fluorescence emission spectra of the turbid samples containing the saute fluorophore in different concentrations, we can calculate the concentration. In addition. the evaluation of the scattering and absorption co-efficients allow us to predict the spatial distribution of the light intensity inside and outside of the phantom. It seems that the Monte Carlo simulation is an effective and relatively simple mathematical approach for tissue optical properties evaluation. (c) 2005 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Optics Communications |
en |
dc.identifier.doi |
10.1016/j.optcom.2005.05.013 |
en |
dc.identifier.isi |
ISI:000232087500005 |
en |
dc.identifier.volume |
254 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
40 |
en |
dc.identifier.epage |
51 |
en |