HEAL DSpace

Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Golias, JC en
dc.date.accessioned 2014-03-01T01:22:53Z
dc.date.available 2014-03-01T01:22:53Z
dc.date.issued 2005 en
dc.identifier.issn 0968-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16706
dc.subject Genetic optimization en
dc.subject Multivariate time series en
dc.subject Neural networks en
dc.subject Short-term predictions en
dc.subject Traffic flow en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Feedforward neural networks en
dc.subject.other Genetic algorithms en
dc.subject.other Mathematical models en
dc.subject.other Multilayer neural networks en
dc.subject.other Optimization en
dc.subject.other Time series analysis en
dc.subject.other Genetic optimization en
dc.subject.other Intelligent transportation systems en
dc.subject.other Multivariate time series en
dc.subject.other Short term predictions en
dc.subject.other Traffic flow en
dc.subject.other Highway traffic control en
dc.subject.other intelligent transportation system en
dc.title Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.trc.2005.04.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.trc.2005.04.007 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Short-term forecasting of traffic parameters such as flow and occupancy is an essential element of modern Intelligent Transportation Systems research and practice. Although many different methodologies have been used for short-term predictions, literature suggests neural networks as one of the best alternatives for modeling and predicting traffic parameters. However, because of limited knowledge regarding a network's optimal structure given a specific dataset, researchers have to rely on time consuming and questionably efficient rules-of-thumb when developing them. This paper extends past research by providing an advanced, genetic algorithm based, multilayered structural optimization strategy that can assist both in the proper representation of traffic flow data with temporal and spatial characteristics as well as in the selection of the appropriate neural network structure. Further, it evaluates the performance of the developed network by applying it to both univariate and multivariate traffic flow data from an urban signalized arterial. The results show that the capabilities of a simple static neural network, with genetically optimized step size, momentum and number of hidden units, are very satisfactory when modeling both univariate and multivariate traffic data. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Transportation Research Part C: Emerging Technologies en
dc.identifier.doi 10.1016/j.trc.2005.04.007 en
dc.identifier.isi ISI:000231897000002 en
dc.identifier.volume 13 en
dc.identifier.issue 3 en
dc.identifier.spage 211 en
dc.identifier.epage 234 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής