HEAL DSpace

Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, E en
dc.contributor.author Papadimitriou, I en
dc.contributor.author Poulakakis, I en
dc.date.accessioned 2014-03-01T01:22:57Z
dc.date.available 2014-03-01T01:22:57Z
dc.date.issued 2005 en
dc.identifier.issn 0921-8890 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16738
dc.subject Mobile manipulators en
dc.subject Nonholonomic en
dc.subject Obstacle avoidance en
dc.subject Path planning en
dc.subject Phafians en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Robotics en
dc.subject.other Algebra en
dc.subject.other Algorithms en
dc.subject.other Collision avoidance en
dc.subject.other Dynamic programming en
dc.subject.other Functions en
dc.subject.other Manipulators en
dc.subject.other Mobile robots en
dc.subject.other Problem solving en
dc.subject.other Mobile manipulators en
dc.subject.other Nonholonomic en
dc.subject.other Path planning phafians en
dc.subject.other Remote environments en
dc.subject.other Polynomials en
dc.title Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.robot.2005.03.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.robot.2005.03.006 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract A planning methodology for nonholonomic mobile manipulators in the presence of obstacles is developed. The method employs smooth and continuous functions, such as polynomials, and it is very fast, easy to use and computationally inexpensive. The core of the method is based on mapping the nonholonomic constraint to a space where it can be satisfied trivially. In this paper, the method is first extended to include polygonal obstacles of any kind, allowing for less conservative workspace representations. The algebraic nature of the methodology and its advantages are retained. To improve the performance of the method in finding collision-free paths with smaller length, two techniques are studied in detail. The first uses intermediate path points and the second exploits the periodicity of the trigonometric functions involved. The proposed methodology is also extended to the case of obstacles that are moving in the workspace with a priori known trajectories. This case is illustrated by an example of great application interest, in which the end-point follows a desired Cartesian trajectory while the platform and the manipulator follow valid and collision-free paths connecting given initial and final points. Additional illustrative examples demonstrate the planning methodologies in a variety of obstructed spaces. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Robotics and Autonomous Systems en
dc.identifier.doi 10.1016/j.robot.2005.03.006 en
dc.identifier.isi ISI:000229892300001 en
dc.identifier.volume 51 en
dc.identifier.issue 4 en
dc.identifier.spage 229 en
dc.identifier.epage 247 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής