dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:22:58Z |
|
dc.date.available |
2014-03-01T01:22:58Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16741 |
|
dc.subject |
Generalized subdifferentials |
en |
dc.subject |
Locally Lipschitz functions |
en |
dc.subject |
Nonsmooth C-condition |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
p-Laplacian-type |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
MULTIPLE SOLUTIONS |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
SIGN |
en |
dc.title |
Positive solutions for nonlinear hemivariational inequalities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2005.01.051 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2005.01.051 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper we study the existence of positive solutions for nonlinear problems driven by the p-Laplacian or more generally, by multivalued p-Laplacian-like operators. Both problems have a nonsmooth locally Lipschitz potential (hemivariational inequalities). Using variational methods based on the nonsmooth critical point theory, we prove two existence results with the p-Laplacian and multivalued p-Laplacian-like operators. (c) 2005 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2005.01.051 |
en |
dc.identifier.isi |
ISI:000231576500013 |
en |
dc.identifier.volume |
310 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
161 |
en |
dc.identifier.epage |
176 |
en |