dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Makridima, K |
en |
dc.contributor.author |
Alexandridis, A |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Iglessi-Markopoulou, O |
en |
dc.date.accessioned |
2014-03-01T01:22:58Z |
|
dc.date.available |
2014-03-01T01:22:58Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0166-1280 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16746 |
|
dc.subject |
Glass transition temperature |
en |
dc.subject |
QSPR |
en |
dc.subject |
RBF neural network |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
poly(1 pentene) |
en |
dc.subject.other |
poly(1,1 dichloroethylene) |
en |
dc.subject.other |
poly(2 chlorostyrene) |
en |
dc.subject.other |
poly(3 methylstyrene) |
en |
dc.subject.other |
poly(4 chlorostyrene) |
en |
dc.subject.other |
poly(4 fluorostyrene) |
en |
dc.subject.other |
poly(a methylstyrene) |
en |
dc.subject.other |
poly(butylacrylate) |
en |
dc.subject.other |
poly(butylethylene) |
en |
dc.subject.other |
poly(chlorotrifluoroethylene) |
en |
dc.subject.other |
poly(cyclohexylethylene) |
en |
dc.subject.other |
poly(ethylchloroacrylate) |
en |
dc.subject.other |
poly(ethylmethylacrylate) |
en |
dc.subject.other |
poly(methyl methacrylate) |
en |
dc.subject.other |
poly(n heptylacrylate) |
en |
dc.subject.other |
poly(n hexylacrylate) |
en |
dc.subject.other |
poly(n octylacrylate) |
en |
dc.subject.other |
poly(oxyethylene) |
en |
dc.subject.other |
poly(oxyoctamethylene) |
en |
dc.subject.other |
poly(oxytetramethylene) |
en |
dc.subject.other |
poly(tert butylacrylate) |
en |
dc.subject.other |
poly(tert butylmethylacrylate) |
en |
dc.subject.other |
poly(vinyl n butyl ether) |
en |
dc.subject.other |
poly(vinyl n octyl ether) |
en |
dc.subject.other |
poly(vinylhexyl ether) |
en |
dc.subject.other |
polyethylene |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
polyvinyl acetate |
en |
dc.subject.other |
polyvinylchloride |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
unindexed drug |
en |
dc.subject.other |
accuracy |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
glass transition temperature |
en |
dc.subject.other |
linear regression analysis |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
molecular weight |
en |
dc.subject.other |
multiple regression |
en |
dc.subject.other |
parameter |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
quantitative structure activity relation |
en |
dc.subject.other |
theoretical model |
en |
dc.title |
Prediction of high weight polymers glass transition temperature using RBF neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.theochem.2004.11.021 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.theochem.2004.11.021 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A novel approach to the prediction of the glass transition temperature (T,) for high molecular polymers is presented. A new quantitative structure-property relationship (QSPR) model is obtained using Radial Basis Function (RBF) neural networks and a set of four-parameter descriptors, Sigma MV(ter)(R-ter), L-F, AX(SB) and Sigma PEI. The produced QSPR model (R-2 = 0.9269) proved to be considerably more accurate compared to a multiple linear regression model (R-2 =0.8227). (c) 2004 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Molecular Structure: THEOCHEM |
en |
dc.identifier.doi |
10.1016/j.theochem.2004.11.021 |
en |
dc.identifier.isi |
ISI:000227966200024 |
en |
dc.identifier.volume |
716 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
193 |
en |
dc.identifier.epage |
198 |
en |